Электрическое напряжение
Это давление на дно и есть то самое напряжение (по аналогии с гидравликой). В данном случае, дно башни – это ноль, начальный уровень отсчёта. За начальный уровень отсчёта в электронике берут вывод батарейки или аккумулятора со знаком «минус». Можно даже сказать, что уровень «воды в башне» у 12-вольтового автомобильного аккумулятора выше, чем уровень воды 1,5 Вольтовой пальчиковой батарейки.
Так вот, по аналогии с электроникой, это давление называется напряжением. Например, вы, наверное, не раз слышали такое выражение, типа «блок питания может выдать от 0 и до 30 Вольт». Или говоря детским языком, создать «электрическое давление» на своих клеммах (отметил на фото) от 0 и до 30 Вольт. Нулевой уровень, откуда идет отсчет электрического давления, обозначается минусом.
источник питания постоянного тока
Электрическое напряжение — это еще не значит, что в электрической цепи течет электрический ток. Для того, чтобы появился электрический ток, электроны должны двигаться в одном направлении, а они в данный момент тупо стоят на месте. А раз нет движения электронов, то и нет электрического тока.
С точки зрения электроники, на одном щупе блока питания есть давление, а на другом его нет. То есть это земля, на которой стоит башня, если провести аналогию с гидравликой. Поэтому, положительный щуп блока питания да и вообще всех приборов стараются сделать красным, мол типа берегитесь, здесь высокое давление! А отрицательный щуп — черным или синим.
В электронике, чтобы указать, на каком выводе больше » электрическое давление», а на каком меньше проставляют два знака: плюс и минус, соответственно положительный и отрицательный. На плюсе избыточное «давление», а на минусе — ноль.
Поэтому, если замкнуть эти два вывода между собой, электрический ток устремится от плюса к минусу, но напрямую этого делать крайне не рекомендуется, так как это уже будет называться коротким замыканием.
Электрический ток
Электрический ток в проводниках представляет собой:
в металлах — направленное движение электронов (проводники первого рода);
в электролитах — направленное движение положительных и отрицательных ионов (проводники второго рода);
в плазме — направленное движение электронов и ионов обоих знаков (проводники третьего рода).
За направление электрического тока условились считать направление движения положительно заряженных частиц.
Движение заряженных частиц внутри проводника нельзя наблюдать, но судить о наличии электрического тока можно по его действиям:
- тепловому — проводник с током нагревается;
- магнитному — вокруг проводника с током возникает магнитное поле;
- световому — проводник с током может светиться;
- химическому — в проводнике с током изменяется химический состав (такие проводники называются проводниками второго класса).
Для продолжительного существования электрического тока в замкнутой цепи необходимо выполнение следующих условий:
- наличие свободных заряженных частиц (носителей тока);
- наличие электрического поля, силы которого, действуя на заряженные частицы, заставляют их двигаться упорядоченно;
- наличие источника тока, внутри которого сторонние силы перемещают свободные заряды против электростатических (кулоновских) сил.
Количественными характеристиками электрического тока являются сила тока I и плотность тока j.
Сила тока — скалярная физическая величина, равная отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку:
Единицей силы тока в СИ является ампер (А).
Если сила тока и его направление со временем не изменяются, то ток называется постоянным.
Плотность тока j — это векторная физическая величина, модуль которой равен отношению силы тока I в проводнике к площади S поперечного сечения проводника:
В СИ единицей плотности тока является ампер на квадратный метр (А/м2).
*Зависимость силы тока от скорости зарядов
Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.
Выделим участок проводника площадью сечения S и длиной Δl (рис. 1). Заряд каждой частицы q. В объеме проводника, ограниченном сечениями 1 и 2, содержится n∙S∙Δl частиц, где n — концентрация частиц. Их общий заряд \(~\Delta q = q_0 \cdot n \cdot S \cdot \Delta l\).
Если средняя скорость упорядоченного движения свободных зарядов \(~\left\langle \upsilon \right\rangle\), то за промежуток времени \(~\Delta t = \dfrac{\Delta l}{\left\langle \upsilon \right\rangle}\) все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:
Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.
Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов \(~\left\langle \upsilon \right\rangle\) при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.
Как следует из формулы (1), плотность тока \(~\vec j = q_0 \cdot n \cdot \left\langle \vec \upsilon \right\rangle\).
Направление вектора плотности тока \(~\vec j\) совпадает с направлением вектора скорости упорядоченного движения \(~\left\langle \vec \upsilon \right\rangle\) положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.
Закон Фарадея
Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.
Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.
Формула закона электромагнитной индукции Фарадея выглядит следующим образом:
Рис. 2. Формула закона электромагнитной индукции
И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.
Основные понятия и законы электростатики
Закон Кулона:сила взаимодействия двух точечных неподвижных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними:
Коэффициент пропорциональности в этом законе
В СИ коэффициент k записывается в виде
Потенциалом электрического поля называют отношение потенциальной энергии заряда в поле к этому заряду:
Проекция напряжённости электрического поля на какую-нибудь ось и потенциал связаны соотношением
Электроёмкостью тела называют величину отношения
Основные понятия и законы постоянного тока
Электрический ток — направленное движение электрических зарядов. В разных веществах носителями заряда выступают элементарные частицы разного знака. За положительное направление тока принято направление движения положительных зарядов. Количественно электрический ток характеризуют его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:
Закон Ома для участка цепи имеет вид:
При параллельном соединении величина, обратная сопротивлению, равна сумме обратных сопротивлений:
где t — время, I — сила тока, U — разность потенциалов, q — прошедший заряд.Закон Джоуля-Ленца:
Основные понятия и законы магнитостатики
Характеристикой магнитного поля является магнитная индукция ➛B. Поскольку это вектор, то следует определить и направление этого вектора, и его модуль. Направление вектора магнитной индукции связано с ориентирующим действием магнитного поля на магнитную стрелку. За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле. Направление вектора магнитной индукции прямолинейного проводника с токам можно определить с помощью правила буравчика:если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения рукоятки буравчика совпадает с направлением вектора магнитной индукции. Модулем вектора магнитной индукции назовём отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током , к произведению силы тока на длину этого участка:
Основные понятия и законы электромагнитной индукции
Если замкнутый проводящий контур пронизывается меняющимся магнитным потоком, то в этом контуре возникает ЭДС и электрический ток. Эту ЭДС называют ЭДС электромагнитной индукции, а ток — индукционным. Явление их возникновения называют электромагнитной индукцией. ЭДС индукции можно подсчитать по основному закону электромагнитной индукции или по закону Фарадея:
Электромагнитные колебания и волны
Колебательным контуром называется электрическая цепь, состоящая из последовательно соединённых конденсатора с ёмкостью C и катушки с индуктивностью L (см. рис. 7).
Для свободных незатухающих колебаний в контуре циклическая частота определяется формулой
Период свободных колебаний в контуре определяется формулой Томсона:
Ток, текущий через катушку индуктивности, по фазе отстаёт от напряжения на π/2 или на четверть периода. Напряжение опережает ток на такой же фазовый угол.
Трансформатором называется устройство, предназначенное для преобразования переменных токов. Трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки. Катушка, которая подключается к источнику переменного напряжения, называется первичной обмоткой, а катушка, которая подключается к потребителю, называется вторичной обмоткой. Отношение напряжения на первичной обмотке и вторичной обмотке трансформатора равно отношению числа витков в этих обмотках:
Предисловие
Ладно, начнем издалека… Как вы знаете, все электронные устройства состоят из блоков. Их еще часто называют каскады, модули, узлы и тд. В нашей статье будем использовать понятие “блок”. Например, источник питания, собранный по этой схеме:
состоит из двух блоков. Я их пометил в красном и зеленом прямоугольниках.
В красном блоке мы получаем постоянное напряжение, а в зеленом блоке мы его стабилизируем. То есть блочная схема будет такой:
Блочная схема – это условное деление. В этом примере мы могли бы даже взять трансформатор, как отдельный блок, который понижает переменное напряжение одного номинала к другому. Как нам удобнее, так и делим на блоки нашу электронную безделушку. Метод “от простого к сложному” полностью работает в нашем мире. На низшем уровне находятся радиоэлементы, на высшем – готовое устройство, например, телевизор.
Ладно, что-то отвлеклись. Как вы поняли, любое устройство состоит из блоков, которые выполняют определенную функцию.
– Ага! Так что же получается? Я могу просто тупо взять готовые блоки и изобрести любое электронное устройство, которое мне придет в голову?
Да! Именно на это нацелена сейчас современная электроника
На словах все выходит прекрасно, но всегда есть подводные камни, которые следует изучить, чтобы начать проектировать электронные устройства. Некоторые из этих камушков называются входным и выходным сопротивлением.
Думаю, все помнят, что такое сопротивление и что такое резистор. Резистор хоть и обладает сопротивлением, но это активное сопротивление. Катушка индуктивности и конденсатор будут уже обладать, так называемым, реактивным сопротивлением. Но что такое входное и выходное сопротивление? Это уже что-то новенькое. Если прислушаться к этим фразам, то входное сопротивление – это сопротивление какого-то входа, а выходное – сопротивление какого-либо выхода. Ну да, все почти так и есть. И где же нам найти в схеме эти входные и выходные сопротивления? А вот “прячутся” они в самих блоках радиоэлектронных устройств.
Действие электродвижущих сил
Электродвижущая сила (ЭДС) является скалярной величиной, характеризующей работу не электрических сил, заставляющих производить разность потенциалов на выходе.
Дополнительная информация. Скалярная величина – это когда она может быть выражена только определённым значением. В отличие от векторной величины, которая определяется не только значением, но и направлением.
Используется ЭДС в генераторах, преобразующих какую либо работу А (джоуль) в электрическую. Для этого могут быть использованы такие виды энергии по их происхождению:
- Механическая индукционная. Вывод ЭДС возникает при пересечении проводником линий магнитного поля;
- Механическая пьезоэлектрическая. Возникновение ЭДС происходит при деформации некоторых веществ;
- Световая энергия. Здесь ЭДС появляется в полупроводниках при действии на них световых лучей;
- Термическая энергия. ЭДС образуется, когда контакты из разнородных проводников находятся под разными температурами;
- Химическая энергия. Возникновение ЭДС происходит вследствие химических реакций.
В зависимости от характера энергии и устройства генератора ЭДС может возникать как переменная, так и постоянная. Переменная может быть как синусоидальная (магнитные индукционные генераторы), так и импульсная (пьезозажигалки). Постоянную ЭДС преобразуют в основном из химической (элементы питания, аккумуляторы), световой (фотоэлементы) энергий и температуры (элементы Пельтье).
Генераторы тока
ЭДС образует на разноименных проводниках разность потенциалов. Если не соединять проводником клеммы, на которых имеется разность потенциалов, то тока в цепи не будет. Следовательно, никакой энергии не будет израсходовано. На клеммах будет оставаться разность потенциалов. Работу для поддержания этой разности совершать не надо.
Если к клеммам с разностью потенциалов подключить проводник с нагрузкой, то через него будет протекать электрический ток, выполняя работу в нагрузке. При этом разность потенциалов на клеммах будет стремиться к 0, что приведёт к падению тока до 0. Для поддержания разности потенциалов стабильной величиной необходимо, чтобы ЭДС получала энергию. Эта энергия затрачивает работу, равную той, которая совершается в нагрузке.
Советуем изучить Типы стабилизаторов напряжения
Закон Ома для полной цепи
- Подробности
- Просмотров: 432
«Физика — 10 класс»
Сформулируйте закон Ома для участка цепи.
Из каких элементов состоит электрическая цепь?
Для чего служит источник тока?
Рассмотрим простейшую полную (т. е. замкнутую) цепь, состоящую из источника тока (гальванического элемента, аккумулятора или генератора) и резистора сопротивлением R (рис. 15.10). Источник тока имеет ЭДС Ε и сопротивление r.
В генераторе r — это сопротивление обмоток, а в гальваническом элементе сопротивление раствора электролита и электродов.
Сопротивление источника называют внутренним сопротивлением в отличие от внешнего сопротивления R цепи.
Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление цепи R + r. Эта связь может быть установлена теоретически, если использовать закон сохранения энергии и закон Джоуля—Ленца (15.14).
Пусть за время Δt через поперечное сечение проводника проходит электрический заряд Δq. Тогда работу сторонних сил при перемещении заряда Δq можно записать так: Аст = ΕΔq. Согласно определению силы тока (15.1) Δq = IΔt. Поэтому
Аст = ΕIΔt. (15.17)
При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых г и Я, выделяется некоторое количество теплоты. По закону Джоуля—Ленца оно равно:
Q = I2RΔt + I2rΔt. (15.18)
По закону сохранения энергии Аст = Q, откуда получаем
Ε = IR + 1r. (15.19)
Произведение силы тока и сопротивления участка цепи называют падением напряжения на этом участке.
Таким образом, ЭДС равна сумме падений напряжения на внутреннем и внешнем участках замкнутой цепи.
Закон Ома для замкнутой цепи:
Сила тока в замкнутой цепи равна отношению ЭДС источника тока к полному сопротивлению цепи.
Согласно этому закону сила тока в цепи зависит от трёх величин: ЭДС Ε сопротивлений R внешнего и г внутреннего участков цепи. Внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи (R >> r). При этом напряжение на зажимах источника примерно равно ЭДС: U = IR = Ε — Ir ≈ Ε
При коротком замыкании, когда R ≈ 0, сила тока в цепи и определяется именно внутренним сопротивлением источника и при электродвижущей силе в несколько вольт может оказаться очень большой, если r мало (например, у аккумулятора r ≈ 0,1 — 0,001 Ом). Провода могут расплавиться, а сам источник выйти из строя.
Если цепь содержит несколько последовательно соединённых элементов с ЭДС Ε1, Ε2, Ε3 и т. д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных элементов.
Для определения знака ЭДС любого источника нужно вначале условиться относительно выбора положительного направления обхода контура.
На рисунке (15.11) положительным (произвольно) считают направление обхода против часовой стрелки.
Если при обходе цепи данный источник стремится вызвать ток в направлении обхода, то его ЭДС считается положительной: Ε > 0. Сторонние силы внутри источника совершают при этом положительную работу.
Если же при обходе цепи данный источник вызывает ток против направления обхода цепи, то его ЭДС будет отрицательной: Ε < 0. Сторонние силы внутри источника совершают отрицательную работу. Так, для цепи, изображённой на рисунке 15.11, при обходе контура против часовой стрелки получаем следующее уравнение:
Εп = Ε1 + Ε2 + Ε3 = lΕ1| — |Ε2| + |Ε3|
Если Εп > 0, то согласно формуле (15.20) сила тока I > 0, т. е. направление тока совпадает с выбранным направлением обхода контура. При Εп < 0, наоборот, направление тока противоположно выбранному направлению обхода контура. Полное сопротивление цепи Rп равно сумме всех сопротивлений (см. рис. 15.11):
Rп = R + r1 + r2 + r3.
Для любого замкнутого участка цепи, содержащего несколько источников токов, справедливо следующее правило: алгебраическая сумма падений напряжения равна алгебраической сумме ЭДС на этом участке (второе правило Кирхгофа):
I1R1+ I2R2 + … + InRn = Ε1 + Ε2 + … + Εm
Следующая страница «Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»»
Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»
Законы постоянного тока — Физика, учебник для 10 класса — Класс!ная физика
Электрический ток. Сила тока —
Закон Ома для участка цепи. Сопротивление —
Электрические цепи. Последовательное и параллельное соединения проводников —
Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников» —
Работа и мощность постоянного тока —
Электродвижущая сила —
Закон Ома для полной цепи —
Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»
Закон Ома для полной цепи
Источник тока, как и любой проводник, имеет определенное сопротивление, который называют внутренним сопротивлением источника и обозначают r, в отличие от сопротивления внешней цепи R. Как известно из курса физики, по закону Ома, для участка цепи сила тока I на участке цепи прямо пропорциональна приложенному напряжению U и обратно пропорциональна сопротивлению R этого участка, I=U/R. Формулу закона Ома записывают и в таком виде: U = IR, где произведение IR называют падением напряжения на данном участке цепи. Для участка, который не содержит источника тока, понятие напряжения и падения напряжения совпадают.
Согласно закону Ома, для внешней и внутренней участков цепи можно записать U вн = Ir, U вн = IR. Тогда ε = IR + Ir, то есть сумма падений напряжений на внешнем и внутреннем участках цепи равна ЭДС источника.
Следовательно, сила тока в цепи зависит от трех величин, две из которых (ЭДС и внутреннее сопротивление) характеризуют источник, а третья зависит от самой цепи. Если пользоваться определенным источником электрической энергии, то ε и r можно считать постоянными величинами. Если менять сопротивление внешней цепи, то соответственно будет меняться сила тока I в цепи и падение напряжения IR на наружной части круга. С увеличением сопротивления внешней цепи сила тока уменьшается, а напряжение растет. Если R = ∞ (цепь разомкнута), то I = 0, падение напряжения внутри источника отсутствует, а напряжение на полюсах источника равна его ЭДС. На этом основывается метод измерения ЭДС источника. Вольтметр присоединяют к полюсам источника при разомкнутой внешней цепи. В этом случае вольтметр показывает падение напряжения IR на самом себе. А поскольку сопротивление вольтметра обычно очень большое, т.е R >> r, U = IR ≈ ε. Чем больше сопротивление вольтметра по сравнению с внутренним сопротивлением источника тока, то точнее будет измеренное значение ЭДС.
Расчет потребляемой мощности
Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.
Вам это будет интересно Обозначение разного электрооборудованья на схемах
Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.
Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.
Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации. Подсчет потребляемой мощности
Подсчет потребляемой мощности
Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.
Что влияет на мощность тока
Добавление электрического сопротивления позволяет учесть потери в подключенной цепи (нагрузке). В формуле нахождения мощности для полной цепи учитывают параметры источника питания. Для более точного анализа следует оценить скорость потребления энергии на единицу объема проводника (ΔV).
Мощность равна формуле:
Pуд = Rуд * j2,
где:
- Rуд – удельное сопротивление;
- j – плотность тока соответствующего участка цепи.
Из этого выражения понятна зависимость расхода электричества от проводимости. Данное соотношение определяет требования к используемой кабельной продукции. При недостаточном сечении (высоком уровне примесей) увеличивается нагрев. Аналогичный результат получают при подключении мощной нагрузки. На определенном уровне произойдет тепловое разрушение материала.
К сведению. Этот процесс является причиной типичных аварийных ситуаций. Для предотвращения повреждений применяют специализированную технику – автоматические выключатели.
Отличия мощности при постоянном и переменном напряжении
Ведем обозначения электрических величин, которые приняты в нашей стране:
- Р − активная мощность, измеряется в ваттах, обозначается Вт;
- Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
- S − полная мощность, измеряется в вольт амперах, обозначается ВА;
- U − напряжение, измеряется в вольтах, обозначается ВА;
- I − ток, измеряется в амперах, обозначается А;
- R − сопротивление, измеряется в омах, обозначается Ом.
Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.
Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.
ЭДС с точки зрения гидравлики
Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение
Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.
Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…
Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.
Все то же самое можно сказать и про радиоэлемент конденсатор:
Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд. Нарисуем заряженный конденсатор вот так:
Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к заряженному конденсатору.
Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.
Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.
Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.
Итак, давайте вспомним, что такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.
Нелинейные элементы и цепи
Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, например, для большинства проводников. Его невозможно использовать для расчёта напряжения и тока в полупроводниковых или электровакуумных приборах, где эта зависимость не является пропорциональной и её можно определять только с помощью вольтамперной характеристики (ВАХ). К данной категории элементов относятся все полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.) и электронные лампы. Такие элементы и цепи, в которых они используются, называют нелинейными.