Как проверить люминесцентную лампу на работоспособность

Оглавление

Проверка светодиодов

Вариант 1

Проверка исправности светодиода мультиметром достаточно проста. Это можно сделать прямо на плате мультиметром, не выпаивая сам светоид. Для проверки понадобится только мультиметр, включенный в режим проверки диодов. Перед проверкой необходимо найти анод детали. Если соблюдена правильная полярность, деталь должна засветиться. Тест на работоспособность можно считать пройденным. Также на определение работоспособности влияет яркость свечения. Тусклый свет не показатель испорченной детали. Причиной может стать нехватка напряжения.

Вариант 2

Еще один простой способ проверить светодиоды возможен, если мультиметр оснащен гнездом для прозвонки транзисторов. В этом случае, чтобы проверить исправность светодиода мультиметром, его прозванивают в такой последовательности:

  1. Перевести мультиметр в режим прозвонки — hFE.
  2. В гнездо вставить светодиод, анод в отверстие «С», катод в отверстие «Е» (секция NPN).
  3. Яркое свечение детали укажет на ее исправность.

Часто после прозвонки, светодиоды не работают в схеме. Причина этому разница в силе тока мультиметра и рабочего напряжения. Для того чтобы точно определить пригодность детали необходимо выполнить прозвонку проверяемого светодиода мультиметром без выпаивания.

Вариант 3

Это способ проверки светодиодов, подключенных параллельно в осветительных лампах или лентах. Перед началом проверки необходимо посмотреть схему подключения и определить «+» вход. Сама проверка светодиода в этом случае будет выглядеть следующим образом:

  1. Установить тестер в режим замера постоянного тока.
  2. Включить прибор с неисправной деталью.
  3. Щуп «минус» подключит к «минусу» на плате.
  4. Щуп «+» подключить к вводному контакту, проверяемого элемента.
  5. Замерить напряжение.
  6. После замера, подключит «+» щуп к выходу детали.
  7. Если напряжение отсутствует, это показатель неисправности детали.

Подобный способ является опасным, так как проверка проводится с подключением в электрическую сеть. Часто причиной неисправности в лампах, работающих от постоянного напряжения, становится пробой диодного моста.

Вариант 4

Проверить сразу несколько светодиодов в цепи можно не выпаивая их из схемы. Напряжения 9 вольт, от которого работает мультиметр, вполне хватает для прозвонки сразу всех светодиодов.

  1. Тестер перевести в режим замера сопротивления.
  2. Определить полярность схемы подключения всех деталей.
  3. Согласно полярности, подключить один щуп к вводу первого светодиода.
  4. Второй щуп подключить к выходу последнего элемента.
  5. При отсутствии сопротивления, поочередно подключать щуп к выходу каждого следующего светодиода.

Появление показаний сопротивления, укажет на последний исправный светодиод в цепи. После него, необходимо осуществить поочередную прозвонку всех деталей, для выявления прогоревшего элемента. Если лампа собрана по двойной схеме, светодиоды во второй цепи могут быть запаяны наоборот. После проверки одной схемы, необходимо сменить полярность подключения тестера.

Выявление неполадок и их устранение

Все неисправности ЛДС сводятся к следующему:

  1. изделие не включается;
  2. светильник мерцает и выключается;
  3. мерцание длится долго, изделие не загорается;
  4. гудение без включения;
  5. ЛДС горит, но с мерцанием.

Эти проявления приводят к порче зрения, поэтому ремонтировать светильник следует немедленно. Для проверки люминесцентной лампы нужно иметь мультиметр для измерения сопротивления. Сначала меняют лампу на годную. Если она включается — дело в ней, не горит — применяем инструмент.

Распространенной причиной является ослабление контакта между электродами лампы и клеммами патрона. Их нужно почистить спиртосодержащим средством или ластиком, использовать для этого шкурку с мелким зерном или просто слегка подогнуть штырьки. Этот способ хорошо помогает при устранении неисправности в домашних условиях.

ЛДС не предназначена для работы при низких температурах окружающего воздуха и при больших скачках напряжения в сети (более 7%).

Ремонт балласта

Прежде всего балласт нужно осмотреть на предмет наличия перегоревших компонентов. На проблемы указывают вздутые емкости, деформированные транзисторные корпуса, следы гари. Когда замена указанных элементов не приводит к восстановлению работоспособности лампы, понадобится проверка всей цепи.

На рис. 3 показана типовая схема пускорегулирующего устройства. Она применяется, с незначительными изменениями, во всех балластах.

Условные обозначения на схеме расшифрованы на следующем рисунке.

Катушка L1 и емкость C1 выполняют роль фильтра помех. В некачественных китайских изделиях вместо катушки установлена перемычка.

Катушка L2 оснащается определенным количеством витков – от 250 до 350. Они наматываются проводом диаметром 0,2 миллиметра на ферритовый сердечник. Деталь выполнена в виде буквы Ш и внешне похожа на маленький трансформатор.

Трансформатор T1 имеет от 3 до 9 витков. Чаще всего применяется провод диаметром 0,3 миллиметра. Магнитопроводником выступает ферритовое кольцо.

Предохранителя FY1-0.5 A обычно нет в комплектации китайских изделий. В качестве предохранителя в таких случаях выступает низкоомное сопротивление (R1). Эта деталь сгорает чаще всего. Замена ее редко позволяет восстановить работоспособность лампы, так как перегорание предохранителя – следствие, а не причина проблемы.

Поиск неисправностей в балласте

Последовательность действий следующая:

Меняем резистор-предохранитель. Проблемы с балластом практически всегда связаны с перегоранием резистора.
Ищем неисправности. Чаще всего из строя выходят емкости, поэтому поиск начинаем с них. Используя паяльник, выпаиваем конденсаторы C3-C5. Далее тестируем их мультиметром. Если отмечается незначительное свечение колбы в районе нитей накала, – почти наверняка нужна замена емкости C5. Она относится к колебательному контуру, который участвует в создании высоковольтного импульса, вызывающего разряд. При выгоревшей емкости лампа не сможет войти в рабочий режим, хотя на спирали и будет электропитание, проявляющееся свечением.
Если с емкостями проблемы не обнаружены, проверяем диоды, имеющиеся в мосте. Тестирование осуществляем без выпаивания диодов с платы. Если хотя бы один из диодов неисправен, высока вероятность пробития емкости C2. Обнаружен вздутый C2 – это почти наверняка перегорел один или сразу несколько мостовых диодов.
Предположим, что описанные выше элементы сохраняют работоспособность, тогда проверяем транзисторы. В данном случае не обойтись без выпаивания, так как обвязка не позволит получить точные результаты при замерах.
Когда найден источник проблемы, проверяем функционирование источника света, запитав цоколь

Выполняем эту операцию осторожно, так как на плату поступает опасное для жизни напряжение.
Как только лампа заработала, отключаем электропитание и начинаем сборочный процесс.

Формула зависимости напряжения и мощности лампочки

Это основная формула статьи, вывод которой будет приведён ниже. Формула выглядит так:

Для любой лампы накаливания существует параметр, стабильный в широком диапазоне электрических режимов. Этим параметром является отношение куба напряжения к квадрату мощности.

Методика использования формулы проста.

Берем лампочку, читаем на колбе или на цоколе параметры, на которые она расчитана – напряжение и мощность, рассчитываем константу, потом вставляем в формулу любое произвольное напряжение и вычисляем мощность, которая выделится на лампочке.

Зная мощность, несложно вычислить ток.

Зная ток, несложно вычислить сопротивление нити накаливания.

Вот и рассмотрим вопросы, связанные с правильной эксплуатацией формулы, а так же с теми ограничениями, котрые неизбежны ввиду того что «абсолютных» формул просто не бывает.

Однако, сначала немножко «теории»…

Проверка светодиодной лампы

Для того чтобы проверить светодиодную лампу потребуется аккуратно снять рассеиватель. Затем перевести измерительный прибор в режим измерения сопротивления до 200 Ом. В этом случае на щупах тестера будет небольшое напряжение, которое не в состоянии полностью зажечь светодиод, но слегка подсветить его вполне возможно.

При такой проверке важно соблюсти полярность. В точке вывода электричества от внутреннего блока питания, как правило, указывается «+» и «−»

Полупроводники подключаются последовательно, поэтому чтобы их проверить необходимо поочередно подключить щупы к каждому элементу (со стороны «плюса» подключается красный щуп). В первую очередь следует прозвонить элементы, на поверхности которых есть темные пятна.

Не лишней будет информация о том, как проверить светодиодную лампочку, если каждый элемент «отзовется» на прикосновение щупов мультиметра небольшим свечением. В этом случае прозванивают провода от цоколя, до платы питания. Также следует проверить исправность транзистора и диодного моста.

Если в результате проверки будет выявлены неисправности внутренних элементов, то энергосберегающую лампу дешевле заменить, чем тратить время на поиск подходящих электрических деталей.

Диагностика неисправности лампы подсветки монитора Как проверить лампу подсветки монитора правильно, зависит от того, какой тип осветительных элементов используется в экране компьютера. Для выполнения этой задачи могут применяться:

  • CCFL (флуоресцентные лампочки).
  • Светодиоды.

Флуоресцентные лампочки подсветки экрана можно проверить с помощью специального тестера. Светодиоды проверяются таким же образом, как и при диагностике полупроводниковых ламп, работающих от сети. Если подключить щупы к элементам соблюдая полярность, то они начнут немного светиться (в режиме измерения сопротивления до 200 Ом).

Основная проблема при выполнении диагностической операции — добраться до осветительных элементов

При выполнении работы следует соблюдать осторожность, ведь даже в отключенном мониторе может оставаться опасное для жизни напряжение

Как проверить светодиод мультиметром

20.05.2017

Светоизлучающие диоды нашли широкое применение в современных осветительных приборах. Это обусловлено их экономичностью и высокой надежностью по сравнению с обычными электролампами.

Тем не менее, LED-элементы не застрахованы от неисправностей. Проверить их работоспособность можно различными способами, но наиболее точным и простым методом является проверка с помощью тестера.

В этой статье мы поговорим о том, как проверить светодиод мультиметром, и каковы особенности этой процедуры.

Тестирование светодиодов в режиме прозвонки

Мультиметр представляет собой универсальный измеритель, который позволяет проверить исправность практически любого электрического устройства или элемента. Чтобы проверить с помощью тестера светоизлучающий диод, необходимо, чтобы прибор мог переключаться в режим проверки диодов, который чаще всего называют прозвонкой.

Проверка исправности светодиода мультиметром производится в следующем порядке:

  • Установить переключатель тестера в режим проверки диодов.
  • Подключить щупы мультиметра к контактам проверяемого элемента.

При подключении LED следует учитывать полярность его выводов (черный щуп измерительного прибора подключается к катоду, а красный – к аноду). Впрочем, если точное расположение полюсов неизвестно, то ничего страшного в неправильном подсоединении нет, и светодиод в этом случае из строя не выйдет.

Если щупы подключены к контактам неправильно, то начальные показания на табло тестера не изменятся. Если полярность не перепутана, рабочий диод начнет светиться.

  • Ток прозвонки имеет небольшое значение, и его недостаточно для того, чтобы светодиод работал в полную силу. Поэтому увидеть свечение элемента можно, слегка затемнив помещение.
  • Если возможности приглушить освещение нет, нужно посмотреть на показания мультиметра. При проверке рабочего диода значения на табло прибора будут отличаться от единицы.

Наглядно проверка светодиодов на видео:

С помощью этого метода можно проверить на работоспособность даже мощный диод. Минус такого способа заключается в том, что провести диагностику элементов, не выпаивая их из схемы, не получится. Чтобы протестировать LED в схеме, к щупам необходимо подсоединить переходники.

Иногда исправность детали проверяется путем измерения сопротивления, но этот способ не получил широкого распространения, поскольку чтобы воспользоваться им, нужно знать технические параметры диода.

Проверка светодиодов без выпаивания

Для подсоединения щупов измерительного прибора к колодке PNP к ним следует припаять маленькие металлические наконечники, для чего можно использовать простые канцелярские скрепки.

Чтобы надежнее изолировать кабели с припаянными наконечниками, следует вставить между ними прокладку из текстолита и обмотать конструкцию изолентой.

Путем этих несложных манипуляций мы получим надежный и одновременно простой переходник, с помощью которого сможем подсоединить щупы мультиметра к контактам светоизлучающего диода.

Затем щупы подключаются к контактам LED-элемента, при этом выпаивать последний из общей схемы не требуется. Дальнейшая проверка производится в том же порядке, который описан выше.

Приведем наглядный пример проверки исправности светодиода без выпаивания его из схемы.

Проверка светоизлучающих диодов в фонариках

При тестировании элементов светодиодных фонариков прибор нужно разобрать и достать из него плату со смонтированными LED. Затем наконечники, припаянные к щупам мультиметра, подключаются с соблюдением полярности к ножкам светодиода прямо на плате.

Переключатель тестера устанавливается в режим прозвонки, после чего можно определить, исправен ли элемент, по отразившимся показаниям на табло и по наличию (или отсутствию) свечения.

Проверка светодиодов без выпаивания удобна и тем, что позволяет определить неисправность путем замера величины сопротивления в схеме. Так, при параллельном подключении LED приближающееся к нулю сопротивление говорит о неисправности как минимум одного из элементов. Получив такие результаты, нужно проверить каждый светодиод по отдельности вышеизложенными способами.

На видео проверка светодиодов лампочки без выпаивания:

Заключение

Из этого материала вы узнали, как проверить светодиод на исправность мультиметром. Процедура эта совсем несложна, и, имея под рукой обычный тестер, каждый сможет проверить работоспособность светодиодов в бытовых приборах.

Тестирование автомобильной лампочки

Автолюбителей часто интересует вопрос о том, как проверить лампу, вышедшую из строя. В чем причина неисправности? Проблема может заключаться не только в автомобильной лампочке, но и в электропроводке или патроне. Проверка мультиметром проводится так же, как и при тестировании обычных лампочек с нитью накаливания. Рекомендуется следующий порядок действий:

  • после остывания электронной системы автомобиля демонтировать неработающие лампочки;
  • установить тестер в положение проверки минимального сопротивления;
  • приложить щупы к контактам, чтобы проверить лампочки с помощью мультиметра.

Если прибор измерит сопротивление, то лампочки исправны, если же на экране будут буквенные символы или знак бесконечности – это свидетельствует об их непригодности.

Как проверить люминесцентную лампу: обнаружение и устранение неисправностей

Самым популярным источником искусственного света является люминесцентная лампа, которая потребляет в 5–7 раз меньше электроэнергии, чем лампа накаливания, а светит так же ярко. Более экономичные светодиоды с драйверами не смогли вытеснить лампы дневного света с рынка в силу своей высокой цены.

В течение срока использования ЛДС могут потерять работоспособность. Для устранения неполадок необходимо знать, как проверить люминесцентную лампу, в том числе – мультиметром. Об этом и пойдет речь.

Люминесцентная лампа

Принцип работы

Люминесцентная лампа по принципу действия приравнивается к газоразрядным источникам света, является энергосберегающей. Из стеклянной колбы откачивается воздух и помещается инертный газ с капелькой ртути 30 мг.

В противоположные стороны встроены спиральные электроды, напоминающие нить накаливания. Эти электроды припаяны с обеих сторон к двум контактным ножкам, помещенным в диэлектрические пластины. Трубка изнутри покрыта слоем люминофора.

Длина, диаметр и форма колбы могут быть разными, внутреннее строение от этого не меняется.

Строение люминесцентной лампы

Включение ЛЛ происходит с помощью пускорегулирующей аппаратуры – электромагнитной или электронной. Электромагнитная пускорегулирующая аппаратура (ЭмПРА) включает в себя главный элемент – дроссель.

Электромеханический дроссель

Это балластное сопротивление в виде катушки индуктивности с металлическим сердечником, последовательно соединенное с ЛДС.

Дроссель поддерживает равномерность разряда и корректирует ток при необходимости.

В миг включения светильника дроссель сдерживает пусковой ток, пока спиральные нити не разогреются, далее выдает пиковое напряжение от самоиндукции, зажигающее лампу.

Схема люминесцентного светильника с ЭмПРА

Обратите внимание! Дроссель сдерживает ток в системе при включении, предотвращая перегрев спиральных нитей в трубке и их перегорание. Предъявляемые к балластному сопротивлению требования:. Предъявляемые к балластному сопротивлению требования:

Предъявляемые к балластному сопротивлению требования:

  • минимальные потери мощности;
  • малые вес и размер;
  • отсутствие гула;
  • температура накала не выше 600 градусов по Цельсию.

Другой значимый элемент ЭмПРА – стартер тлеющего разряда.

Стартер тлеющего разряда

Во время включения светильника в стартере возникает разряд тока, накаляющий биметаллические контакты. Они замыкаются, увеличивая ток в цепи светильника, что ведет к разогреву электродов.

Далее биметаллический контакт стартера остывает и размыкает цепь. В этот миг балласт (дроссель) выдает высоковольтный импульс на электроды. Между ними возникает дуговой разряд, вызывающий ультрафиолетовое излучение.

От этого люминофор на поверхности колбы светится в видимом для человека спектре.

Люминесцентная лампа с электромагнитным дросселем функционирует в двух режимах: зажигания и свечения.

Электронная пускорегулирующая аппаратура (ЭПРА) используется в светильниках нового поколения, увеличивает срок службы лампы и повышает КПД. В режиме свечения уровень напряжения на электродах допускает работу ЛЛ с перегоревшими спиралями, что невозможно при ЭмПРА. В схеме ЭПРА исключается использование стартеров.

Схема подключения электронного балласта

Электронные балласты достаточно дорогие и сложны для ремонта своими силами, поэтому имеет место широкое применение электромеханических дросселей.

Электронный балласт

Важно! Лампа с электронным балластом функционирует в четырех режимах: включения, предварительного разогревания, зажигания и горения

Утилизация прибора

Люминесцентные лампы содержат пары ртути, вредные для живых организмов и окружающей среды. Утилизация осуществляется лицензированными организациями, с которыми юридические лица заключают договоры. Выбрасывать ЛДС с обычным мусором запрещено.

Ремонт люминесцентных ламп несложен, если следовать схемам и инструкциям, и позволяет продлить срок службы осветительного оборудования.

люминесцентные светильники

Повреждение электронного дросселя

А если балласт у вас электронный, как проверить его? ЭПРА как сокращенно их называют, уже не похож на индуктивную катушку.

Все современные модели выпускаются с электронными дросселями без стартеров.

ЭПРА расшифровывается как — электронная пуско-регулирующая аппаратура.
У нее множество электронных компонентов напаяны на плату и помещены в один корпус.

Прозвонить мультиметром всего лишь два конца здесь уже не получится. Придется последовательно шаг за шагом проверять все элементы схемы.

Начинать лучше с предохранителя. Вызваниваете его целостность в режиме прозвонки.

Далее осматриваете конденсаторы. У тех, которые в виде бочонков, можно определить повреждение даже визуально, по вздутию нижней части.

Еще внимательно проглядите все места пайки. Какие-то ножки могут отвалиться и контакт пропадет.

Диоды и транзисторы также проверяются мультиметром, после переключения его в соответствующий режим измерения.

Данные сопротивлений берите из таблиц в интернете, согласно их расцветки.

И сравнивайте с теми фактическими замерами, которые у вас получились.

В общем, чтобы проверить и отремонтировать электронный дроссель, понадобятся минимальные навыки радиолюбителя.

Вот очень хорошее и подробное видео по проверке каждого элемента на плате ЭПРА, с заменой поврежденных деталей на исправные. Тем более, что повреждений здесь оказалось не одно, а несколько.

Проверка стартера

Проверка светильников с ЛДС заключается в контроле целостности вольфрамовых спиралей, расположенных непосредственно в колбах ламп, а также в контроле работоспособности дросселей и стартеров.

После вскрытия корпуса светильника, лампы надо проверить на наличие почернений у концов колб. Если почернения есть, то в схеме светильника, скорее всего, имеется какая-то неисправность, и, если ее не устранить, то лампы отработают очень недолго.

При отсутствии «признаков жизни» в светильнике следует проверить в первую очередь стартер. Он выходит из строя чаще всего, так как его элементы работают механически в условиях многократно изменяющейся температуры. Разобрав корпус стартера, необходимо осмотреть конденсатор и лампу:

  • конденсатор не должен быть вздутым или взорвавшимся, что может быть следствием наличия скачков большого напряжения в сети;
  • лампа не должна быть сильно почерневшей;
  • далее конденсатор можно проверить с помощью универсального тестера – мультиметра.

Чтобы проверить ЛДС, мультиметр переводится в режим омметра с наибольшим возможным пределом измерения сопротивления. При проведении измерений между выводами конденсатора сопротивление должно быть бесконечным.

Если при измерении будет зафиксировано сопротивление менее 2 МОм, то, скорее всего конденсатор имеет недопустимый ток утечки. Но эти признаки, указывающие на неисправность, могут и не выявиться. Очень часто в домашних условиях проверить стартер можно только, установив его в заведомо исправный светильник.

В любом случае, если выяснится, что причиной отказа в работе светильника является стартер, его необходимо заменить.

Как прозвонить лампочку мультиметром – Строительство и ремонт

Не всегда визуальный осмотр лампы накаливания позволяет сделать вывод о её непригодности. Бывают случаи, когда вольфрамовая нить не имеет повреждений, но лампочка в светильнике не светится. Установить причину и тем самым подтвердить или опровергнуть неисправность лампы можно несколькими способами. О том, как это сделать, можно узнать из этой статьи.

Устройство люминесцентной лампы

Лампа дневного света состоит из одного стеклянного цилиндра с наружным диаметром 12, 16, 26 или 38 мм. Причем он может быть как прямым, так и изогнутой конструкции в виде буквы U или кольца и т. п.

С торцов цилиндра в металлические заглушки встроены в диэлектрическую пластину две контактные ножки под цоколь светильника, на которые с внутренней стороны припаяны электроды, схожие по конструкции с нитями ламп накаливания.

Из колб люминесцентных ламп откачивается воздух, а вместо него добавляется инертный газ с небольшой капелькой ртути (около 30 мг) или сплава ртути с Индием и другими металлами.

Почему перегорают люминесцентные лампы

Электроды люминесцентной лампы, как и у ламп накаливания делаются из вольфрамовой нити, но только покрытой активной массой из щелочных металлов. Без нее вольфрамовая спираль очень быстро бы сгорела от перегрева в результате образования между нитями разряда, а так обеспечивается стабильно тлеющий электрический разряд.

Но со временем покрытие на вольфрамовой нити выгорает или осыпается, особенно процесс усиливается во время запуска включения, потому что в этот момент- разряд происходит только на маленьком отрезке нити, вызывая усиленный перегрев ее в этом месте. Поэтому на старых лампах по концам возле цоколя видны потемнения на люминофоре.

Постепенно с выгоранием активной массы электродов — будет происходить все больший их разогрев, из-за этого рано или поздно одна из нитей перегорает. И лампа перестает работать.

Как проверить люминесцентную лампу

Ее легко проверить с использованием мультиметра или тестера. Для проверки установите переключатель прибора в положение измерения минимального сопротивления, а лучше при наличии, в режим прозвонки.

После этого прикоснитесь концами щупов к выводам цоколя с одной стороны, а затем- с противоположной. Если Вы услышите звуковой индикатор и увидите не большое сопротивление нити на экране- значит лампа цела.

При обрыве- сопротивление будет очень большим до бесконечности.

Более подробно читайте в нашей статье: Как пользоваться прозвонкой .

Схема подключения перегоревших люминесцентных ламп

Представляю вашему вниманию схему, которая исключает из работы ненадежный и гудящий дроссель, а так же часто требующий замены стартер. Кроме того по этой схеме работает перегоревшая люминесцентная лампа дневного света.

Никогда не используйте исправные лампы в этой схеме.

Для нормальной работы конденсаторов С1, С4 необходимо выбирать бумажные модели на 300-350 Вольт, а для С2, С3 лучше всего подойдут слюдяные.

Преимущества использования светодиодных приборов

Мощная светодиодная лампа позволит осветить помещения с высокими потолками, может быть использована в светильниках наружного освещения, способствовать ландшафтному дизайну.

Изготовители выпускают led лампы с цоколями Е40 или Е27, корпус которых, обеспечен защитой IP64, что позволяет использовать подобные источники света при различных погодных условиях.

Очевидны преимущества данных осветительных приборов:

  • способствуют многократной экономии электрической энергии;
  • не требуют изменений проекта системы освещения и дополнительных расчётов;
  • при включении практически сразу демонстрируют предельную мощность;
  • не выделяют ультрафиолетового и теплового излучения;
  • не меняют цветовое свечение и интенсивность, со временем;
  • не производят мерцания, вредных выделений, шума.

При выборе того или иного источника света, принято руководствоваться основным параметром – мощностью лед ламп. Благодаря данной характеристике, не трудно высчитывать количество энергии, преобразуемой прибором в свет, тем более что мощные светодиодные лампы обладают высоким уровнем эффективности.

Так, одинаковое свечение у LED лампочки, требующее 6 Вт, для иных осветительных приборов потребует 60-ти, потому, для создания одинакового уровня освещённости разным источникам необходимо различное количество энергии.

Светодиодные лампы большой мощности обладают:

  • достаточно крупными габаритами;
  • большим количеством светодиодов встроенного типа.

Так, лампы «кукуруза» превосходно зарекомендовали себя при использовании для освещения:

  • городских улиц;
  • парков;
  • территории дачных участков;
  • складских и производственных помещений с высокими потолками,

к тому же изготовители оснащают светодиодные лампы большой мощности встроенными линзами, что позволяет увеличить угол освещения до 140˚.

Конструкция

Светодиод — это полупроводниковый элемент, по конструкции схожий с диодом. При прохождение через светодиод тока создается видимое глазу оптическое излучение. Данная деталь состоит из:

  1. Анода, через который подается положительный заряд.
  2. Катода, через который подается отрицательный заряд.
  3. Отражателя световых потоков.
  4. Излучающего полупроводникового чипа или кристалла.
  5. Рассеивателя свечения.

Для ламп любых форм эта стандартная конструкция. Для достижения яркости, производители только увеличивают число слоев или количество кристаллов. Эти значения прямо влияют на мощность.

Можно ли проверить мультиметром в домашних условиях

Самый простой способ проверки – это использование аналогичного светильника с установкой в него люминесцентной лампы и последующим включением в сеть. Но далеко не всегда есть прибор с таким же видом патрона на замену. Кроме того, винтовая резьба цоколя и патрона может не совпасть, в итоге электрические контакты просто не замкнутся.

В этом случае, в домашних условиях здорово выручает весьма распространенный измерительный прибор – мультиметр. Среди его режимов можно найти «прозвонку», которая легко определяет целостность электрической цепи.

Проводится проверка очень просто:

  • выбирается соответствующий режим;
  • первый щуп ставится на центральный контакт, а второй – на боковой;
  • снимаются показания с прибора.

Второй режим, часто используемый для диагностики – это «сопротивление». В ходе проверки также применяются щупы и исходные значения сравниваются с теми, что выявляет мультиметр. Небольшая погрешность в измерениях может проявляться за счет слабого касания контактов щупами.

Базовые «теоретические» предпосылки

Формула была получена в предположении того, что в металле (из которого состоит нить накаливания) ток и сопротивление имеют единую физическую сущность.

В упрощенном виде это можно рассуждать примерно так.

Сообразно современным воззрениям, ток представляет собой упорядоченное движение носителей заряда. Для металла это будут электроны.

Было сделано предположение, что электрическое сопротивление металла определяется ХАОТИЧЕСКИМ движением тех же самых электронов.

С возрастанием температуры нити, хаотическое движение электронов возрастает, что, в конечном итоге, и приводит к возрастанию электрического сопротивления.

Еще раз. Ток и сопротивление в нити накаливания – суть одно и тоже. С той лишь разницей, что ток – это упорядоченное движение под действием электрического поля, а сопротивление – это хаотическое движение электронов.

Готовим мультиметр к работе

Вынимаем прибор из чехла или футляра. Первым делом проводим визуальный осмотр. Корпус должен быть целым, крышка батарейного отсека установлена без перекосов. Визуально оцениваем целостность проводов и щупов. Отсутствие изоляции, которая может от времени просто осыпаться, восстанавливаем изолентой. Поможет и термоусадочная трубка, если она есть. Щупы тоже стоит осмотреть, замотать сколы по необходимости. Селектор мультиметра ставив в режим измерения омов, на отметку в 200 Ом. Чёрный кабель со щупом включаем в гнездо Com. Красный — в гнездо с символами измеряемых величин, названных в честь Алессандро Вольта, Андре-Мари Ампера и Георга Ома — V, A и Омега.

На индикаторе должна быть единица. Если это не так — прибор нуждается в ремонте. Замыкаем накоротко щупы. На дисплее должна выйти цифра ноль. Если всё так и происходит — прибор исправен. Если цифры меняются, отображаются тускло, попробуйте поменять элемент питания прибора на заведомо свежий и рабочий. Не помогло — мультиметр надо ремонтировать. Для проверки лампочки ставим селектор мультиметра на символ поиска обрыва. На корпусе в этом месте схематично изображён диод.

Стоит ли ремонтировать энергосберегающие лампы

Решение о том, ремонтировать или не ремонтировать лампу, во многом зависит от количества неисправных источников света. Если речь идет о единственной перегоревшей лампочке, не стоит связываться с трудоемким процессом ремонта. Когда ламп много, ремонт обретает экономический смысл. Из частей нескольких ламп реально собрать одну, которая будет работоспособной. Из практики известно, что для сборки одной лампочки понадобятся детали от 3–4 испорченных источников света.

Принимая решение о ремонте лампы, стоит подумать о предстоящих затратах. Придется потратиться на покупку деталей (если их нельзя взять из лампочек, которые перегорели), на поездку в магазин или на рынок. Кроме того, процесс поиска и причин достаточно трудоемок, поэтому следует учесть и затраты времени.

Буквенные обозначения электрических лампочек

Если вы узнали, как прозвонить лампочку, но не знаете о том, к какому типу элементов питания относится изделие, то следует поискать на ее корпусе обозначение. Тип осветительного прибора, как правило, указывается несколькими символами:

  • LED — светодиодные.
  • CCFL — флуоресцентные.
  • ДРЛ — ртутная.
  • ЛДС — дневного света.
  • ЛН — накаливания.

На светильниках также может быть указана буквенная маркировка. По первому символу можно установить принадлежность прибора к определенной категории, например:

  • Н — накаливания.
  • Д — светодиодная.
  • И — кварцево-галогенная.
  • Р — газоразрядная ртутная лампа.

Вне зависимости от того на двенадцать вольт используется осветительный элемент или подключается к бытовой электрической сети, буквенное обозначение остается неизменным.