Проверка работоспособности стартера люминесцентных ламп

Как проводится проверка работоспособности ламп

Проверка источника света сводится к тому, чтобы убедиться в сохранности целостности спирали с обеих сторон колбы. Для этих целей можно использовать цифровой мультиметр или тестер.*

Если прибор выдал значение (например, 10 ом), то лампа целая и нити не перегорели. А вот если мультиметр выдает полный обрыв, то нить перегорела.

Дополнительным визуальным способом определить неисправность дросселя, без помощи измерительного прибора, является наличие эффекта «огненной змейки». Она периодически «вьется» по колбе. Ее появление демонстрирует факт того, что ток в источнике света превышает свои допустимые значения. Поэтому электрический заряд стал нестабильным. В такой ситуации мультиметром нужно проверить вольт-амперные характеристики источника света. Если будут выявлены даже незначительные несоответствия с заданными производителями параметрам, то необходимо менять дроссель.

В данной ситуации проверка проводиться следующим образом:

  • два провода, идущие от дросселя, нужно отсоединить;
  • их соединяем с цоколем рабочей контрольной лампы;
  • подключаем полученную конструкцию к электросети.

Если люминесцентный осветительный прибор загорелся в полную силу, то значит дроссель исправен и причина поломки кроется в другом. Самостоятельно ремонтировать устройство источников света дневного типа можно только людям, имеющим необходимые знания, а также набор инструментов. Заменяя дроссель нужно обязательно отключить осветительный прибор от сети электропитания

Обратите внимание! Помните, что просто нажав на выключатель, вы не сможете полностью обесточить светильник. Напряжение в нем все равно останется

При ремонте внимательно следите за схемой подключения определенных элементов устройства прибора, а также обязательно используйте мультиметр для проверки конечного результата ремонтных работ.

Как проверить люминесцентную лампу: обнаружение и устранение неисправностей

Самым популярным источником искусственного света является люминесцентная лампа, которая потребляет в 5–7 раз меньше электроэнергии, чем лампа накаливания, а светит так же ярко. Более экономичные светодиоды с драйверами не смогли вытеснить лампы дневного света с рынка в силу своей высокой цены.

В течение срока использования ЛДС могут потерять работоспособность. Для устранения неполадок необходимо знать, как проверить люминесцентную лампу, в том числе – мультиметром. Об этом и пойдет речь.

Люминесцентная лампа

Принцип работы

Люминесцентная лампа по принципу действия приравнивается к газоразрядным источникам света, является энергосберегающей. Из стеклянной колбы откачивается воздух и помещается инертный газ с капелькой ртути 30 мг.

В противоположные стороны встроены спиральные электроды, напоминающие нить накаливания. Эти электроды припаяны с обеих сторон к двум контактным ножкам, помещенным в диэлектрические пластины. Трубка изнутри покрыта слоем люминофора.

Длина, диаметр и форма колбы могут быть разными, внутреннее строение от этого не меняется.

Строение люминесцентной лампы

Включение ЛЛ происходит с помощью пускорегулирующей аппаратуры – электромагнитной или электронной. Электромагнитная пускорегулирующая аппаратура (ЭмПРА) включает в себя главный элемент – дроссель.

Электромеханический дроссель

Это балластное сопротивление в виде катушки индуктивности с металлическим сердечником, последовательно соединенное с ЛДС.

Дроссель поддерживает равномерность разряда и корректирует ток при необходимости.

В миг включения светильника дроссель сдерживает пусковой ток, пока спиральные нити не разогреются, далее выдает пиковое напряжение от самоиндукции, зажигающее лампу.

Схема люминесцентного светильника с ЭмПРА

Обратите внимание! Дроссель сдерживает ток в системе при включении, предотвращая перегрев спиральных нитей в трубке и их перегорание. Предъявляемые к балластному сопротивлению требования:. Предъявляемые к балластному сопротивлению требования:

Предъявляемые к балластному сопротивлению требования:

  • минимальные потери мощности;
  • малые вес и размер;
  • отсутствие гула;
  • температура накала не выше 600 градусов по Цельсию.

Другой значимый элемент ЭмПРА – стартер тлеющего разряда.

Стартер тлеющего разряда

Во время включения светильника в стартере возникает разряд тока, накаляющий биметаллические контакты. Они замыкаются, увеличивая ток в цепи светильника, что ведет к разогреву электродов.

Далее биметаллический контакт стартера остывает и размыкает цепь. В этот миг балласт (дроссель) выдает высоковольтный импульс на электроды. Между ними возникает дуговой разряд, вызывающий ультрафиолетовое излучение.

От этого люминофор на поверхности колбы светится в видимом для человека спектре.

Люминесцентная лампа с электромагнитным дросселем функционирует в двух режимах: зажигания и свечения.

Электронная пускорегулирующая аппаратура (ЭПРА) используется в светильниках нового поколения, увеличивает срок службы лампы и повышает КПД. В режиме свечения уровень напряжения на электродах допускает работу ЛЛ с перегоревшими спиралями, что невозможно при ЭмПРА. В схеме ЭПРА исключается использование стартеров.

Схема подключения электронного балласта

Электронные балласты достаточно дорогие и сложны для ремонта своими силами, поэтому имеет место широкое применение электромеханических дросселей.

Электронный балласт

Важно! Лампа с электронным балластом функционирует в четырех режимах: включения, предварительного разогревания, зажигания и горения

Утилизация прибора

Люминесцентные лампы содержат пары ртути, вредные для живых организмов и окружающей среды. Утилизация осуществляется лицензированными организациями, с которыми юридические лица заключают договоры. Выбрасывать ЛДС с обычным мусором запрещено.

Ремонт люминесцентных ламп несложен, если следовать схемам и инструкциям, и позволяет продлить срок службы осветительного оборудования.

люминесцентные светильники

Неполадки и их устранение

Определить перегорание люминесцентной лампы можно по нескольким факторам:

  • лампа не включается при подаче напряжения;
  • при запуске наблюдаются кратковременные мерцания, постепенно переходящие в равномерное свечение;
  • прибор долго мерцает, но не может разгореться в полную силу;
  • при работе слышен сильный гул;
  • лампочка работает, однако во время свечения наблюдаются мерцания и пульсации.

Лампа в момент пульсации

Полный отказ от включения повод проверить прибор. Но при мерцании пользователи откладывают диагностику и ремонт на неопределенный срок. Делать этого не рекомендуется, т.к. пульсирующее свечение некомфортно и негативно действует на зрение.

Перед началом проверки убедитесь, что проблема в лампе, а не в светильнике. Для проверки подключите к светильнику заведомо исправную колбу.

Если дело в патроне, почистите контакты спиртовой жидкостью, зачистите шкуркой и в случае необходимости измените их положение относительно колбы. Возможно, проблема в слабом контакте между компонентами системы.

Если светильник исправен, проблема в лампе.

Целостность спиралей электродов

Первый этап проверки колбы это измерение сопротивления в контактах системы мультиметром. Установите режим проверки сопротивления, выбирая минимальный диапазон значений. Щупы приложите к контактам лампы с обеих сторон.

Нулевое сопротивление свидетельствует о разрыве нити между электродами во внутренней части колбы. На исправном устройстве показатель сопротивления будет находиться в диапазоне от 3 до 16 Ом в зависимости от характеристик модели.

Неисправности в электронном балласте

В современных осветительных приборах для стабилизации напряжения используется электронная пускорегулирующая аппаратура. Рекомендуется сначала попробовать заменить балласт на рабочий и проверить исправность системы. Если причина в нем, можно приступать к самостоятельной починке устройства.

Неисправный ЭПРА

Первым делом меняется предохранитель. Слабое свечение электродов свидетельствует о пробитом конденсаторе. Его можно заменить, но лучше сразу подбирать конденсатор с рабочим напряжением 2 кВ. Это даст запас надежности, поскольку в подавляющем большинстве дешевых ЭПРА применяются конденсаторы с показателями не более 400 В. Такие элементы плохо переносят нагрузки и быстро сгорают.

Проверять балласт после ремонта нужно только с подключенной нагрузкой, поскольку работа вхолостую быстро приведет к поломке.

Как проверить дроссель

Неисправность дросселя обычно выражается гудением светильника, темнеющими краями колбы, перегревом, сильным мерцанием во время работы. Если хоть один из этих признаков имеет место, надо проверить элемент сопротивления.

Проверка дросселя

Проверка включает шаги:

  1. Из светильника вытаскивается стартер.
  2. Контакты в патроне замыкаются накоротко.
  3. Колба вытаскивается из паза, контакты в патронах закорачиваются.
  4. Включается мультиметр в режиме измерения сопротивления.
  5. Щупы подсоединяются к контактам в патроне лампы. Бесконечное сопротивление говорит об обрыве обмотки, малое значение в области нуля — о межвитковом замыкании.

Как проверить стартер

Если лампа мерцает, но не загорается в полную силу, надо проверить стартер. Проверка возможна только при последовательном подключении лампочки на 60 Вт и стартера к сети.

Как проверить емкость конденсатора тестером

Проблема с конденсатором может оказать существенное влияние на всю систему, снизив КПД с 90% до 40%. Конденсатор подбирается по мощности конкретной лампы. К примеру, для 40 Вт оптимальный конденсатор емкостью 4,5 мкФ.

Проверка конденсатора тестером

Емкость проверяется мультиметром или тестером.

Проверка мультиметром

Мультиметр очень полезный инструмент для эффективной проверки узлов лампы. Переключите его в режим прозвонки или измерение сопротивления в минимальном диапазоне.

Если при подключении щупов к контактам колбы на дисплее мультиметра появляется конкретное значение, лампа исправна. Отсутствие сигналов говорит об обрыве нити. Проверка других узлов осуществляется так же. Нужно лишь заранее ознакомиться с номинальными значениями сопротивлений на контактах и прозвонить их. Даже минимальное отклонение может стать причиной поломки.

Проверка ЛЛ мультиметром

Классификация люминесцентных ламп

Люминесцентные лампы существуют в ограниченном варианте исполнения. По большему счёту существуют только два варианта, линейные и компактные. Есть ещё кольцевые и U-образные, но их зачастую относят к разновидностям линейных. Они обладают той же структурой, размером и формой стеклянной трубки.

Люминесцентные источники света разделяют на устройства общего освещения и специализированные приборы. Для общего освещения обычно используют устройства с мощностью от пятнадцати до восьмидесяти ват. При этом могут присутствовать дополнительные характеристики света и различного спектра освещения.

Они могут имитировать обычное освещение различного цвета и оттенка. Критериями разделения таких ламп является мощность, тип разряда, по типу излучения, за формой колбы и по способу распределения света.

Различные формы

Каждый из представленных вариантов обладает отдельными подгруппами, которые более точно характеризуют устройство. Например, мощность может быть 15 ват, такая лампа будет маломощной. При использовании прибора на 80 ват, лампа называется сверхмощной.

Излучение света разделяется на такие типы:

  • Естественный свет.
  • Излучение цветного спектра света.
  • Специальные типы излучения для особых случаев и условий.

Маркировка производится с помощью буквенных обозначений. Начинается она с буквы Л, это показывает что устройство люминесцентное. Следующая буква показывает спектр излучаемого света, например, Д – естественное дневное освещение, Б – белый свет и прочие варианты, где буква соответствует первой букве используемого цвета освещения.

Если источник света выдаёт тёплый свет, тогда перед обозначением цвета будет буква Б, соответственно холодный обозначается буквой Х.

Маркировка для отечественной продукции

Также дополнительные обозначения осуществляют помощью следующих букв:

  • Ц – улучшенное качество передачи света.
  • ЦЦ – сверх качественная передача.
  • Р – показывает что тип рефлекторный.
  • Б – устройство быстрого или мгновенного старта.

В самом конце указывают обозначение из цифр, которое отображает мощность прибора в ватах.

Проверка балласта ПРА мультиметром

Но чтобы точно убедиться в повреждении дросселя, все таки лучше воспользоваться мультиметром и провести замеры.

Повреждение дросселя может быть пяти видов:

обрыв

замыкание разных обмоток

замыкание витков в одной обмотке

неисправность магнитопровода

пробой на корпус

Обрыв

Какой-то из проводов, которым намотан дроссель может просто оборваться. Выявляется это легко.

Переводите мультиметр в режим измерения сопротивления и касаетесь щупами выводов дросселя. Если высвечиваются показания ”бесконечность” это и свидетельствует об обрыве.

При замерах только не касайтесь голых кончиков щупов руками. Иначе замерите сопротивление своего тела, а не дросселя.

Кстати, обрыв из всех видов поломок, выявить проще всего. Это можно сделать даже без мультиметра, с помощью обычной индикаторной отвертки.

Ничего выключать и разбирать не нужно, провода тоже не отсоединяются. Если индикатор светится во входной клемме ПРА:

а на выходе свечения нет:

то считайте что обрыв вы нашли.

Замыкание обмоток

Некоторые дросселя могут иметь не одну, а две обмотки. В нормальном режиме они должны быть изолированы между собой.

Но изоляция может высохнуть или нарушиться.

Чтобы узнать о замыкании, мультиметром проверьте выводы не одной, а разных обмоток. Если у вас высветятся непонятно малые цифры, то значит обмотки замкнуты.

Межвитковое замыкание

Если дроссель у вас постоянно грелся, то его лакированная изоляция проводов, могла высохнуть. И один или несколько близлежащих витков, просто спекутся между собой.

Найти такое повреждение очень трудно, даже при помощи мультиметра.

Нужно точно знать изначальные значения сопротивления обмотки, чтобы было с чем сравнивать. Если у вас замкнулись один или два витка, то разницу обычным тестером вы и не увидите.

Найти витковое замыкание можно при спекании достаточно большого количества проводников. Тогда разницу будет видно сразу.

Нормальный (не китайский дроссель), имеет примерно следующие сопротивления:

мощностью на 20Вт — сопротивление от 55 до 60 Ом

мощностью на 40Вт – сопротивление от 24 до 30 Ом

мощностью на 80Вт – сопротивление от 15 до 20 Ом

Магнитопровод

Сердечник дросселя выполнен из ферромагнитных материалов. А они (ферриты), довольно капризны сами по себе.

При эксплуатации, на поверхности запросто могут образоваться трещинки или сколы. Если такое произошло, значит у дросселя изменятся параметры катушек индуктивности.

Еще в сердечниках из-за механических нагрузок могут измениться специальные зазоры.

Проверить индуктивность дросселя можно не всеми мультиметрами. Большинство к сожалению, такой функции лишены.

Однако опять же, чтобы понять проблему, вам нужно знать первоначальные значения данной индуктивности.

Пробой на корпус

О неисправности катушки может свидетельствовать ее нулевое сопротивление относительно корпуса. Здесь ничего сложного в проверке нет.

Один щуп мультиметра подносите к металлическим частям корпуса, а другим касаетесь к выводам катушки дросселя.

Проверять можно и в режиме прозвонки цепи. Если звукового сигнала не будет, значит пробоя нет.

Виды балласта

Наибольшее распространение получили электромагнитная и электронная реализация балласта. Расскажем подробно о каждой из них.

Электромагнитная реализация

В этом варианте работа основывается на индуктивном сопротивлении дросселя (он подключается последовательно лампе). Вторым необходимым элементом является стартер, регулирующий процесс, необходимый для «зажигания». Этот элемент представляет собой компактных размеров лампу, относящуюся к категории газоразрядных. Внутри ее колбы имеются электроды, изготовленные из биметалла (допускается один из них делать биметаллическим). Подключают стартер в параллель к лампе. Ниже показаны два варианта ПРА.


Индуктивно-емкостная (1) и индуктивная реализация (2)

Работа осуществляется по следующему принципу:

  • при поступлении напряжения внутри лампы стартера производится разряд, что приводит к разогреву биметаллических электродов, в следствие чего они замыкаются;
  • замыкание электродов стартера приводит к возрастанию рабочего тока в несколько раз, поскольку его ограничивает лишь внутренне сопротивление катушки дросселя;
  • в следствие повышения уровня рабочего тока лампы, разогреваются ее электроды;
  • стартер остывает, и его электроды из биметалла размыкаются;
  • размыкание цепи стартером приводит к возникновению в катушке индуктивности импульса высокого напряжения, благодаря которому происходит разряд внутри колбы источника, что приводит к его «зажиганию».

После перехода осветительного прибора в штатный режим работы, напряжение на нем и стартере будет меньше сетевого примерно в половину, что недостаточно для срабатывания последнего. То есть он будет находиться в разомкнутом состоянии и не оказывать влияние на дальнейшую работу осветительного устройства.

Такой тип балласта отличается простотой реализацией и низкой стоимостью. Но не следует забывать о том, что данный вариант пускорегулирующих устройств обладает рядом недостатков, таких как:

  • на «зажигание» уходит от одной до трех секунд, причем, в ходе эксплуатации это время будет неуклонно расти;
  • источники с электромагнитным балластом мерцают в процессе работы, что вызывает усталость глаз и может стать причиной головной боли;
  • расход электроэнергии у электромагнитных устройств значительно выше, чем у электронных аналогов;
  • в процессе работы дросселем издается характерный шум.

Эти и другие недостатки электромагнитных пусковых устройств для ЛДС привели к тому, что в настоящее время такие ПРА практически не применяются. Им на смену пришли «цифровые» и аналоговые ЭПРА.

Электронная реализация

Балласт электронного типа, по своей сути, является преобразователем напряжения, при помощи которого осуществляется питание ЛДС. Изображение такого устройства показано на картинке.


Фото электронного устройства для подключения двух ЛДС

Существует множество вариантов реализации электронных балластов. Можно представить характерную для многих устройств этого типа общую блок- схему, которая за небольшими исключениями, используется во всех ЭПРА. Ее изображение представлено на рисунке.


Блок-схема типичной реализации ЭПРА

Многие производители добавляют в устройство блок коррекции коэффициента мощности, а также схему управления яркостью.

Существует два наиболее распространенных способа запуска источников, представляющих собой ЛДС, при помощи электронной реализации балласта:

  1. перед подачей на катоды ЛДС зажигающего потенциала их предварительно подвергают разогреванию. Благодаря высокой частоте поступающего напряжения, достигается две задачи: существенное увеличение КПД и устраняется мерцание. Заметим, что в зависимости от конструкции балласта, зажигание может быть моментальным или постепенным (то есть яркость источника будет постепенно нарастать);
  2. комбинированный метод, он характерен тем, что в процессе «зажигания» принимает участие колебательный контур, который должен войти в резонанс до того, как в колбе ЛДС произойдет разряд. Во время резонанса происходит повышение напряжения, поступающего на катоды, а рост тока обеспечивает их подогрев.

В большинстве случаев при комбинированном методе запуска схема реализована таким образом, что нить накала катода ЛДС (после последовательного подключения через емкость) представляет собой часть контура. Когда происходит разряд в газовой среде люминесцентного источника, это приводит к изменению параметров колебательного контура. В результате он выходит из состояния резонанса. Соответственно, происходит падение напряжения до штатного режима. Пример схемы такого устройства показан на рисунке.

Как проверить люминесцентную лампу на исправность

Лампы дневного света по большинству показателей значительно превосходят традиционные источники света с нитями накаливания. Они выпускаются в широком ассортименте, что позволяет применять их в различных сферах жизни и деятельности. Иногда возникают неполадки в их работе и требуется проверить люминесцентную лампу на исправность. Своевременный ремонт дает возможность быстро ликвидировать неприятные последствия в виде мерцания, шума и других негативных проявлений. Для этого нужно хорошо знать устройство таких ламп, принцип работы, основные неисправности и способы их устранения.

Проверка стартера

Проверка светильников с ЛДС заключается в контроле целостности вольфрамовых спиралей, расположенных непосредственно в колбах ламп, а также в контроле работоспособности дросселей и стартеров.

После вскрытия корпуса светильника, лампы надо проверить на наличие почернений у концов колб. Если почернения есть, то в схеме светильника, скорее всего, имеется какая-то неисправность, и, если ее не устранить, то лампы отработают очень недолго.

При отсутствии «признаков жизни» в светильнике следует проверить в первую очередь стартер. Он выходит из строя чаще всего, так как его элементы работают механически в условиях многократно изменяющейся температуры. Разобрав корпус стартера, необходимо осмотреть конденсатор и лампу:

  • конденсатор не должен быть вздутым или взорвавшимся, что может быть следствием наличия скачков большого напряжения в сети;
  • лампа не должна быть сильно почерневшей;
  • далее конденсатор можно проверить с помощью универсального тестера – мультиметра.

Чтобы проверить ЛДС, мультиметр переводится в режим омметра с наибольшим возможным пределом измерения сопротивления. При проведении измерений между выводами конденсатора сопротивление должно быть бесконечным.

Если при измерении будет зафиксировано сопротивление менее 2 МОм, то, скорее всего конденсатор имеет недопустимый ток утечки. Но эти признаки, указывающие на неисправность, могут и не выявиться. Очень часто в домашних условиях проверить стартер можно только, установив его в заведомо исправный светильник.

В любом случае, если выяснится, что причиной отказа в работе светильника является стартер, его необходимо заменить.

Ремонтные работы

Ремонт мигающего осветительного прибора осуществляем в такой последовательности:

  1. Проверяем напряжение в электросети и качественность контактов.
  2. Меняем лампочку на исправную.
  3. Если светильник продолжает мигать, меняем стартер в светильниках ЭмПРА, проверяем дроссель. В случае с ЭПРА понадобится починка или замена электронного балласта.

Для выполнения ремонтных работ понадобится определенный набор инструментов, в том числе паяльник, мультиметр, отвертки. Очень неплохо, если кроме инструмента имеется хотя бы базовый набор познаний в электротехнике.

Электромагнитный балласт

Чтобы починить устройство с ЭмПРА, выполняем следующие действия:

  1. Проверяем конденсаторы. Применяются для снижения электромагнитных помех и компенсации недостатка реактивной мощности. В некоторых случаях неисправность связана с утечками тока в конденсаторах. Эту причину нужно исключить первой, чтобы избежать ненужной замены достаточно дорогостоящего конденсатора.
  2. Прозваниваем электромагнитный балласт, чтобы найти пробой. Если мультиметр имеет опцию замера индуктивности, по характеристикам дросселя ищем межвитковое замыкание. Перемотка балласта своими руками не стоит потраченного времени — это очень трудоемкая операция. В связи с этим балласт проще поменять или поставить электронный аналог. Нужный ЭПРА можно купить в магазине или достать из вышедшей из строя лампы.

Электронный балласт

Схемы ЭПРА отличаются в зависимости от производителя. Однако принцип их работы ничем не отличается друг от друга: нити накала характеризуются определенной индуктивностью, что дает возможность задействовать их в автоколебательном контуре. Контур включает конденсаторы и катушки, обладает обратной связью с инвертором, состоящим из мощных транзисторных ключей.

Когда нити нагреваются, их сопротивление возрастает, параметры колебаний меняются. Реакция инвертора состоит в выдаче напряжения для розжига лампочки. Происходит шунтирование током через ионизированную газовую среду напряжения на нитях, вследствие чего снижается накал. Обратная связь инвертора с автоколебательным контуром дает возможность управлять силой тока в лампочке.

Ремонт электронного балласта

Для диагностирования состояния ЭПРА в условиях мастерской применяют осциллограф, частотный генератор или другую измерительную технику. Если ремонт проводится дома, поиск проблемы осуществляется путем визуального осмотра электронной платы и последовательного поиска испорченного компонента с помощью подручных измерительных устройств.

Вначале проверяем предохранитель (если есть). Поломка предохранителя нередко оказывается причиной выхода из строя светильника. Бывает это в случае скачка напряжения в электросети. Предохранитель перегорает из-за неправильной работы пускорегулирующего устройства.

Причиной неисправности может быть практически любой элемент балласта, в том числе конденсатор, резистор, транзистор, диоды, дроссели и трансформаторы. На проблему указывает почернение электронных компонентов, произошедшее вследствие выгорания.

Работоспособность системы проверяют мультиметром. Чтобы проверка была качественной, рекомендуется разобрать систему на детали, выпаяв нужные компоненты из платы. Когда детали находятся вместе, возможны ложные результаты измерений. Без выпаивания достоверные показатели можно получить лишь на пробой.

Найденные неисправные детали следует заменить. Пайка полупроводников (диодов и транзисторов) должна осуществляться очень аккуратно, так как эти компоненты легко выходят из строя после перегрева.