Сила тока вычисляется по формуле напряжение

Ампер – единица измерения силы тока в СИ

Единица измерения напряжения

По самому популярному международному стандарту (СИ) силе постоянного тока один ампер (1А) соответствует прохождение единичного заряда (1 кулон) за время 1 с:

1А = 1Кл/ 1 с.

Другое базовое определение создано с дополнительным использованием механических составляющих. В соответствии с ним, аналогичный ток создает силу взаимодействия 2*10-7 Ньютонов на каждый метр погонный конструкции, состоящей из двух параллельных проводников. Подразумевается размещение такого устройства в нейтральной среде (вакууме), полностью изолированной от внешних электромагнитных излучений.

Электрическое напряжение: объяснение простыми словами

Электрическим напряжением обозначается физическая величина, равная разности потенциалов между двумя точками электрического поля при перемещении единичного заряда. Для простых пользователь такое обозначение не всегда понятно. Поэтому в этой статье мы попытаемся простым, доступным языком рассказать, что собой представляет электрическое напряжение, как оно измеряется и для чего это нужно.

Что такое разность потенциалов?

Для начала проанализируем рисунок:

В первой бутылке вода находится на уровне 300 мм, а во второй – на отметке 150 мм. Разница между уровнями воды в обоих емкостях составляет 150 мм. Если рассматривать это с точки зрения науки об электричестве, это и есть разность потенциалов.

Однако, что будет, если соединить обе бутылки шлангом, а внутрь поместить обычный пластиковый шарик?

Из школьного урока физики о принципе соединяющихся сосудах знаем, что из бутылки, где уровень воды больше, жидкость постепенно перетечет в бутылку с более низким уровнем. Под воздействием потока воды шарик внутри соединяющего шланга будет перемещаться. Процесс перетекания завершится после того, как в обоих бутылках уровень жидкости уравновесится, станет одинаковым.

Иными словами, в ситуации, когда в соединенных между собой емкостях уровень жидкости станет одинаковым, результатом разности потенциалов станет ноль. Шарик останется на месте за счет электродвижущей силы, которая, по итогам эксперимента, равна нулю.

Что такое электродвижущая сила?

Аналогично напряжению, единицей измерения электродвижущей силы (ЭДС) является Вольт.

Для проведения следующего эксперимента понадобится вольтметр (прибор, измеряющий вольты) и обычная батарейка.

При исходном замере прибор покажет 1.5 В (Вольта). Однако это не является напряжением – значение указывает на величину электродвижущей силы.

На следующем этапе эксперимента к батарейке подключаются две лампочки. А напряжение измеряется в разных участках электроцепи.

Внимание следует уделить следующим показателям: напряжение для одной лампочки составляет 1 Вольт, для другой же это значение 0.3 Вольта. Напряжение в используемых нами осветительных устройствах напрямую зависит от их мощности, измеряемой в Ваттах

Напряжение в используемых нами осветительных устройствах напрямую зависит от их мощности, измеряемой в Ваттах.

Мощность=Напряжение*ток (Р=U*I)

Из этого следует, что чем больше будет значение мощности лампы, тем большее напряжение будет на ней.

Однако, как же получается: если мощность батарейки 1.5 Вольта, к которой подключены лампочки, разделена на 1 Вольт и 0.3 Вольта, куда направились еще 0.2 Вольта? Дело в том, что каждая батарейка наделена своим внутренним сопротивлением, поэтому недостающие 0.2 Вольта были направлены именно сюда.

Резюме

Электродвижущей силой определена физическая величина, характеризующая в источниках тока работу сторонних силовых ресурсов. Посредством электродвижущей силы мы можем определять, как переносится заряд от источника тока по всей электрической цепи. Напряжение показывает этот процесс лишь на отдельном участке этой цепи. Если проще: напряжение – это внешнее силовое воздействие, способствующее перемещению шарика в шланге, соединяющим сосуды из выше приведенного примера. В электричестве напряжение обозначено силой, которая обеспечивает перемещение электронов между атомами.

Рассмотрим еще один пример

Представьте, что вам по силам будет поднять камень, вес которого составляет 40 кг. Это означает, что вы обладаете подъемной силой, равной 40 кг – в электричестве это обозначается как электродвижущая сила. Вы следуете и на своем пути вам попадается камень весом 20 кг. Вы его также берете и переносите на расстояние 10 метров. Для осуществления этого действия вам понадобилось определенное количество энергии, что в электричестве представляется как напряжение. Далее вам попадается камень весом в 30 кг. Следовательно, для его переноса из одного места в другое вам понадобится больше энергии, чем для камня, масса которого не превышала 20 кг. Однако подъемная сила (в электричестве ЭДС), независимо от веса переносимого вами камня, остается всегда одинаковой. При этом, вес камня определяет количество энергии, которая тратится на проведение этого действия (в электричестве это обозначено напряжением). Таким образом, на каждом отрезке вашего пути вы будете испытывать разное напряжение в зависимости от веса камня, который вы намерены перенести.

Сопротивление проводника/цепи.

Термин «сопротивление» уже говорит сам за себя

Итак, сопротивление — физическая величина, характеризующая свойства проводника препятствовать (сопротивляться) прохождению электрического тока.

Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S:

Сопротивление проводника зависит от нескольких факторов:

  • удельного сопротивления проводника \rho
  • длины проводника l
  • площади поперечного сечения проводника S

Удельное сопротивление — это табличная величина. Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:

R = \rho\medspace \frac{l}{S}

Для нашего случая \rho будет равно 0,0175 (Ом * кв. мм / м) — удельное сопротивление меди. Пусть длина проводника составляет 0.5 м, а площадь поперечного сечения равна 0.2 кв. мм. Тогда:

R =0,0175 \cdot \frac{0.5}{0.2} = 0.04375\medspace Ом

Как вы уже поняли из примера, единицей измерения сопротивления является Ом

С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи.

Как повысить силу тока в блоке питания?

В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.

Ситуация №1.

Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.

Узнайте больше — как проверить транзистор мультиметром на исправность.

При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.

Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.

Кроме того, возможны следующие варианты:

  • Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
  • При наличии защиты по току снизить номинал резистора в цепочке управления.

Ситуация №2.

Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.

Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.

При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.

Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.

Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.

Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.

После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.

Направление постоянного тока и обозначение на электроприборах и схемах

Электрический ток всегда течёт от мест большего потенциала к местам меньшего потенциала. Во всяком случае, так принято считать. То есть условным направлением движения постоянного тока служит направление перемещения положительно заряженных частиц. Если в качестве движущей силы выступают отрицательно заряженные частицы (скажем, электроны в металлах), то направление электрического тока будет прямо противоположным направлению потока движущихся частиц.

В качестве условного обозначения в схемах или на электрических приборах выступают значки: – или =. В описаниях или технической литературе достаточно часто можно встретить сокращение DC, взятое из английского языка и обозначающее однонаправленный (не подверженный переменам направления) электрический ток.

Кроме того, очень часто можно видеть, как зажимы аккумуляторов и батареек маркируются знаками: + («плюс» или «положительный полюс», что обозначает место большего потенциала); – («минус» или отрицательный полюс, представляющий собой место сосредоточения меньшего потенциала). Также электрод подключаемого к положительному зажиму устройства, то есть положительный электрод, называется «анодом», подключаемый к отрицательному зажиму – «катодом».

Направление электрического тока в металлах

По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».

Действия электрического тока (преобразования энергии)

Электрический ток способен вызывать различные действия:

  • Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
  • Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
  • Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
  • Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
  • Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Зависимость силы тока от напряжения

Ответы на поставленные вопросы учитель отражает на ИАД.

Учитель: Мы привыкли к тому, что электрический ток наш незаменимый помощник. Он может дать свет, тепло, связь, приводит в движение различные механизмы, облегчающие труд человека.

Ребята, скажите, а что такое электрический ток?

Ученик: Электрический ток — это упорядоченное (направленное) движение заряженных частиц.

Учитель: Что нужно создать в проводнике, чтобы в нем возник и существовал электрический ток?

Ученик: Чтобы получить электрический ток в проводнике, надо создать в нем электрическое поле.

Учитель: Как называется устройство, с помощью которого создается и длительное время поддерживается электрическое поле в проводнике?

Ученик: Такое устройство называется источником ток

Учитель: Ребята, что мы получим, когда с помощью проводов соединим источник тока, потребитель электрической энергии и замыкающие устройства?

Ученик: Мы получим простейшую электрическую цепь.

Учитель: Ребята, что вы видите на демонстрационном столе?

Ученик: Собрана электрическая цепь, состоящая из источника тока, резистора, амперметра, ключа и вольтметра.

Учитель: Какие измерительные приборы есть в данной электрической цепи?

Ученик: Амперметр и вольтметр.

Учитель: Какие физические величины измеряют эти приборы?

Ученик: Амперметр измеряет силу тока, вольтметр напряжение.

Учитель: Что такое сила тока?

Ученик: Сила тока – это физическая величина, которая показывает, какой заряд проходит через поперечное сечение проводника за единицу времени.

Учитель: Какая физическая величина называется напряжением?

Ученик: Напряжение – это физическая величина, показывающая, какую работу совершает электрическое поле по перемещению заряда из одной точки в другую.

Учитель: Подаем напряжение. И изменяем его.

Учитель плавно изменяет напряжение между концами проводника

Ребята обращают внимание на изменение показания амперметра

Учитель формулирует проблемный вопрос: Ребята, как вы считаете, почему изменяется показание амперметра?

Ученики выдвигают гипотезу: Вероятно, существует какая-то связь (зависимость) между силой тока и напряжением.

Учитель: Будут ли другие версии?

Ученики в основном придерживаются данного предположения.

Учитель: Да действительно, сила тока зависит от напряжения. И сегодняшний урок мы посвятим изучению этой зависимости. Я предлагаю вам сформулировать тему сегодняшнего занятия, которая станет темой нашего исследования.

Ученик: Тема нашего сегодняшнего урока: «Зависимость между силой тока и напряжением» (при необходимости учитель корректирует).

Учитель: Любой ученый ведет записи, опираясь на план. Я предлагаю вам записывать нужную информацию в маршрутном листе урока, а в качестве плана использовать матрицу исследования (Приложение №1 – матрица исследования.docx). Обратимся к маршрутному листу (Приложение №2 маршрутный лист урока.docx) и запишем в него тему, она звучит так: «Зависимость силы тока от напряжения». Опираясь на тему, поставим цель исследования. Ваши предложения?

Ученик: Определить (установить) как зависит сила тока от напряжения.

Учитель: Цель предполагает решение ряда задач. Какие задачи перед собой мы поставим? Для их формулирования вам помогут вопросы на доске.

Отличие

Наверное, основную разницу между током и напряжением можно было заметить уже из определения. Но для удобства мы приведем два основных различия между рассматриваемыми понятиями с более подробным описанием:

  1. Ток – это количество электричества, в то время как напряжением называют меру потенциальной энергии. Иными словами, оба этих понятия сильно зависят друг от друга, но при этом являются очень разными. I (сила тока) = U (напряжение) / R (сопротивление). Это главная формула, по которой можно вычислить зависимость силы тока от напряжения. На сопротивление влияет целый ряд факторов, включая материал, из которого сделан проводник, температура, внешние условия.
  2. Разница в получении. Воздействие на электрические заряды в разных приборах (например, батареях или генераторах) создает напряжение. А ток получается путем прикладывания напряжения между точками схемы.

Многие из нас, еще со школьной скамьи не могут понять того, какие аспекты, отличают силу тока от напряжения. Конечно, учителя постоянно утверждали то, что разница между двумя этими понятиями, является просто огромной

Тем не менее, только некоторые взрослые имеют возможность похвастаться наличием соответствующих знаний и если вы к числу таковых не принадлежите, то вам самое время обратить внимание на наш, сегодняшний обзор

Что отличает силу тока от напряжения?

Осмелимся предположить, что в качестве основной разницы между двумя этими понятиями является их непосредственное определением:

  1. Под словами «сила тока» и «ток», в частности, представляют некое количество электричества, в то время, как напряжением принято считать меру потенциальной энергии. Простыми словами, два эти понятия достаточно сильно зависят друг от друга, сохраняя некоторые отличительные особенности, при всем этом. На их сопротивление влияет огромное количество самых разнообразных факторов. Важнейшим из них, является материал, из которого выполнен тот или иной проводник, внешние условия, а также температура.
  2. Некая разница предусмотрена также и в их получение. Так, если воздействие на электрические заряды, создает напряжение, то ток получается уже путем прикладывания напряжения между точками схемы. Кстати говоря, в качестве таковых приборов, могут выступать обыкновенные батареи или более продвинутые и удобные генераторы. По этой причине мы и можем говорить о том, что основные отличия двух этих понятий, сводятся к их определению, а также тому, что получаются они в результате совершенно разных процессов.

Конечно, в том случае, если в розетку вы не будете подключать никаких электроприборов, напряжение будет оставаться неизменным, в то самое время, как ток будет равняться нулю. Ну а если не будет предусмотрено расхода, то какая вообще может идти речь о токе и какой-либо его силе? По этому, ток — это всего лишь некое количество электричества, в то время, как напряжением считается мера потенциальной энергии определенного источника электричества.

Интересное видео, где подробно объясняется разница между током и напряжением:

Что такое напряжение, и сила тока?

Сегодня речь пойдет о самых базовых понятиях силы тока, напряжения, без общего понимания которых невозможно построение любого электротехнического устройства.

Итак, что же такое напряжение?

Попросту говоря напряжение — разница потенциала между двумя точками электрической цепи, измеряется в Вольтах. Стоит заметить что, напряжение всегда измеряется между двумя точками! То есть, когда говорят что напряжение на ножке контроллера 3 Вольта, подразумевается что разница потенциалов между ножкой контроллера и землей те самые 3 Вольта.

Земля(Масса, Ноль) — это точка электрической схемы с потенциалом 0 Вольт. Однако стоит заметить, что напряжение не всегда измеряется относительно земли. Например, замерив напряжение между двумя выводами контроллера, мы получим разницу электрических потенциалов данных точек схемы. То есть если на одной ножке 3 Вольта(То есть данная точка обладает потенциалом 3 Вольта относительно земли), а на второй 5Вольт(Опять же потенциал относительно земли), мы получим значение напряжения равное 2 вольтам, что равняется разнице потенциалов между точками 5 и 3 Вольта.

Из понятия напряжение вытекает следующее понятие — электрический ток. Из курса общей физики мы помним, что электрический ток есть направленное движение заряженных частиц по проводнику, измеряется в Амперах. Заряженные частицы движутся благодаря разнице потенциалов между точками. Принято считать, что ток происходит из точки с большим зарядом, в точку, обладающую меньшим зарядом. То есть, именно напряжение (разность потенциалов) создает условия протекания тока. При отсутствии напряжения — невозможен ток, то есть между точками с равным потенциалом ток отсутствует.

На своем пути, ток встречает препятствие в виде сопротивления, что препятствует его протеканию. Сопротивление измеряется в Омах. Подробнее о нем мы поговорим в следующем уроке. Однако, между током, напряжением и сопротивлением уже давно выведена следующая зависимость:

Где I — Сила тока в Амперах, U — Напряжение в Вольтах, R — Сопротивление в Омах.

Данное соотношение называется законом Ома. Так же справедливы следующие выводы из закона Ома:

На этом всё, в следующем уроке поговорим о сопротивлении.

Любое копирование, воспроизведение, цитирование материала, или его частей разрешено только с письменного согласия администрации MKPROG . RU . Незаконное копирование, цитирование, воспроизведение преследуется по закону!

Как измерить силу тока

Эту характеристику можно измерить с помощью амперметра. Прибор последовательно подключается к электрической сети (плюс к плюсу, минус к минусу). Чем ниже сопротивление амперметра, тем меньше его влияние на измерения, и тем они точнее. Если сопротивление амперметра стремится к нулю, он нейтрален и не влияет на показатели сети.

Работа амперметра основана на магнитном действии тока. Чем больше сила тока, проходящего по катушки, тем сильнее она взаимодействует с магнитом и тем больше угол поворота стрелки амперметра.

При измерении силы тока амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить.

У каждой клеммы прибора стоит свой знак: “+” или “-“.

Клемму со знаком “+” нужно соединить с проводом, идущим от положительного полюса источника тока, а клемму со знаком “-” – с проводом, идущим от отрицательного полюса источника тока.

На электрических схемах амперметр изображают в виде кружка с буквой А.

Виды амперметров

По конструкции амперметры бывают:

  • аналоговые (со стрелочной измерительной головкой);
  • цифровые (с индикатором).


Амперметр – прибор для измерения силы тока в амперах.

По способу измерения:

  1. Магнитоэлектрические, в которых отклонение чувствительной стрелки и показатели зависят от силы взаимодействия полей постоянного магнита и поля электрического тока в алюминиевой рамке, и угла поворота последней.
  2. Электромагнитные, показатели которых меняются с подвижками железного сердечника под влиянием электромагнитного поля катушки.
  3. Электродинамические, в которых отклонение стрелки связано с притяжением или отклонением подвижной катушки относительно неподвижной, соединенных последовательно или параллельно.
  4. Тепловые, в которых при нагреве электрическим током происходит изменение длины металлической нити и положения связанной с нитью измерительной стрелки.
  5. Индукционные, в которых связанный со стрелкой металлический диск отклоняется под воздействием электромагнитного поля неподвижных катушек.
  6. Детекторные, в которых магнитоэлектрический прибор соединен с выпрямителем-детектором.
  7. Термоэлектрические, которые состоят из нагревателя и магнитоэлектрического измерительного механизма.
  8. Фотоэлектрические, в которых фотоэлектрический элемент преобразует световой поток в электрический.

Магнитоэлектрические приборы определяют только силу постоянного тока, индукционные и детекторные – переменного. Фотоэлектрические высокоточные приборы работают с постоянным током и током низкой и высокой частоты.

Остальные из перечисленных подходят для разных токов.

Приборы бывают многофункциональными, т.е. действующими в разных режимах. Например, мультиметр работает и как вольтметр, и как омметр, и как мегомметр (для высоких сопротивлений).

В всех современных измерительных приборах есть переключатель диапазона чувствительности.

Сила тока

Сразу возникает потребность в величине, которой мы будем «напор» электрического тока измерять. Такая, чтобы она зависела от количества частиц, которые протекают по проводнику.

Сила тока — это физическая величина, которая показывает, какой заряд прошел через проводник.

Сила тока

I = q/t

I — сила тока

q — заряд

t — время

Сила тока измеряется в Амперах. Единица измерения выбрана не просто так.

Во-первых, она названа в честь физика Андре-Мари Ампера, который занимался изучением электрических явлений. А во-вторых, единица этой величины выбрана на основе явления взаимодействия двух проводников.

Здесь аналогии с водопроводом провести, увы, не получится. Шланги с водой не притягиваются и не отталкиваются вблизи друг друга (а жаль, было бы забавно).

Когда ток проходит по двум параллельным проводникам в одном направлении, проводники притягиваются. А когда в противоположном направлении (по этим же проводникам) — отталкиваются.

За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1 м, расположенные на расстоянии 1 м друг от друга в вакууме, взаимодействуют с силой 0,0000002 Н.

Задача

Найти силу тока в цепи, если за 2 секунды в ней проходит заряд, равный 300 мКл.

Решение:

Возьмем формулу силы тока

I = q/t

Подставим значения

I = 300 мКл / 2 с = 150 мА

Ответ: сила тока в цепи равна 150 мА

Основные единицы измерения силы тока

В качестве основной единицы измерения силы тока используют ампер (краткое обозначение – А). Ампер, получивший свое название по имени ученого физика Анри Ампера, входит в Международную систему единиц (СИ).

Если через поперечное сечение в течение 1 секунды проходит 1 кулон электричества, то сила тока в этом проводнике равна одному амперу. Как вспомогательные единицы применяются:

  • миллиамперы (ма), одна тысячная или 10-3 ампер;
  • микроамперы (мкА), одна миллионная или 10-6 ампер.

Сила тока является важным параметром, знание которого поможет в выборе кабелей с оптимальным для планируемой нагрузки размером сечения.

Сила тока – обозначение и базовые формулы

В формулах при расчете такого параметра, как сила тока, обозначение его величины с помощью буквы «I» является общепринятым. Основная формула выглядит как I=q/t, где q – количество электричества, а t – временной отрезок.

Также для расчета силы тока можно использовать такие параметры, как:

  • фактическое напряжение (U);
  • мощность (P).

В этом случае применяется формула I= P/U. Получение силы тока расчетным методом актуально в тех случаях, когда невозможно применение измерительных приборов, например, на этапе проектирования электросетей.

Сила тока в проводнике

Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.

Да и вообще, сопротивление проводника рассчитывается по формуле:

формула сопротивления проводника

Таблица с удельным сопротивлением из разных материалов выглядит вот так.

таблица с удельным сопротивлением веществ

Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:

закон Ома

Задача

У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?

задача на силу тока в проводнике

Решение: