Коллектор Станилова
Инженер Станислав Станилов представил миру самую универсальную конструкцию солнечного коллектора. Основной идеей использования разработанного им устройства является получение тепловой энергии за счет создания парникового эффекта внутри коллектора.
Конструкция коллектора
Конструкция этого коллектора очень проста. По сути, это солнечный коллектор из стальных труб, сваренных в радиатор, который помещён в деревянный контейнер, защищённый теплоизоляцией. В качестве теплоизоляционного материала могут выступать минеральная вата, пенопласт, понополистирол.
На дно коробки кладется оцинкованный металлический лист, на который монтируется радиатор. И лист, и радиатор окрашиваются в чёрный, а сама коробка покрывается белой краской. Разумеется, контейнер накрывается стеклянной крышкой, которая хорошо герметизируется.
Материалы и детали для изготовления
Для сооружения такого самодельного солнечного коллектора для отопления дома понадобится:
- стекло, которые будет служить в качестве крышки. Размер его будет зависеть от габаритов короба. Для хорошей эффективности лучше подбирать стекло размером 1700 мм на 700 мм;
- рама под стекло – её можно сварить самостоятельно из уголков или сколотить из деревянных планок;
- доска для короба. Тут можно использовать любые доски, даже с разборки старой мебели или дощатого пола;
- прокатный уголок;
- соединительная муфта;
- трубы для сборки радиатора;
- хомуты для крепления радиатора;
- лист оцинкованного железа;
- приёмная и выпускная труба радиатора;
- бак объемом 200−300 литров;
- аквакамера;
- теплоизоляция (листы пенопласта, пенополистирола, мин. вата, эковата).
Этапы работ
Этапы изготовления коллектора Станилова своими руками:
- Из досок сколачивается контейнер, дно которого укрепляется брусьями.
- На дно укладывается теплоизолятор. Основание должно быть особенно тщательно утеплено, чтобы избежать утечки тепла у теплообменника.
- После на дно короба устраивают оцинкованную пластину и устанавливают радиатор, который сваривается из труб, и закрепляют его стальными хомутами.
- Радиатор и лист под ним окрашиваются в черный цвет, а короб – в белый или серебристый.
- Бак с водой должен быть установлен под коллектором в теплом помещении. Между ёмкостью для воды и коллектором нужно устроить теплоизоляцию, чтобы трубы находились в тепле. Бак можно поместить в большую бочку, в которую можно засыпать керамзит, песок, опилки и т.д. и таким образом утеплить.
- Над баком нужно установить аквакамеру для того чтобы в сети создавалось давление.
- Монтаж солнечного коллектора своими руками нужно осуществлять на южной стороне кровли.
- После того как все элементы системы готовы и установлены, нужно соединить их в сеть полудюймовыми трубами, которые должны быть хорошо утеплены, дабы уменьшить теплопотери.
- Неплохо будет соорудить и контроллер для солнечного коллектора своими руками, так как заводские устройства эксплуатируются недолго.
Батарея из диодов
Солнечная батарея из диодов Д223Б действительно может стать источником электрического тока. Эти диоды имеют наибольший вольтаж и выполнены в стеклянном корпусе, покрытом краской. Напряжение на выходе готового изделия можно определить из расчета, что один диод на солнце генерирует 350 мВ.
- Необходимое количество радиодеталей складываем в емкость и заливаем ацетоном или другим растворителем и оставляем на несколько часов.
- Затем, необходимо взять пластину нужного размера из не металлического материала и выполнить разметку под впаивание компонентов источника питания.
- После размокания краску можно легко соскрести.
- Вооружившись мультиметром, на солнце или под лампочкой определяем плюсовой контакт и загибаем его. Диоды впаиваются вертикально, так как в таком положении кристалл лучше всего генерирует электричество из энергии солнца. Поэтому на выходе получим максимальное напряжение, которое будет генерировать солнечная батарея.
Распайка диодов
Что лучше – купить или сделать солнечную батарею?
Давайте в этой части подытожим всё, что мы узнали в этой статье. Во-первых, мы разобрались с тем, как собрать солнечную батарею в домашних условиях. Как можно видеть, солнечная батарея своими руками при соблюдении инструкций собирается весьма быстро. Если вы будете пошагово следовать различным мануалам, то вы сможете собрать отличные варианты для обеспечения вас экологически чистой электроэнергией (ну или варианты, рассчитанные на запитку мелких элементов).
Но всё же, что лучше – купить или сделать солнечную батарею? Естественно, лучше её купить. Дело в том, что те варианты, которые изготавливаются в промышленных масштабах предназначены для того, чтобы работать так, как им следует работать. При ручной сборке солнечных панелей нередко можно допустить различные ошибки, которые приведут к тому, что они просто не будут работать должным образом. Естественно, промышленные варианты стоят больших денег, но зато вы получаете качество и долговечность.
Но если вы уверены в своих силах, то при правильном подходе вы соберёте солнечную панель, которая будет не хуже промышленных аналогов. В любом случае, будущее уже рядом и скоро солнечные панели смогут позволить себе все слои. А там, может быть, произойдёт полный переход к использованию солнечной энергии. Удачи!
Если статья оказалась Вам полезна, поделитесь ею с друзьями нажав на кнопочки: Ниже оставляйте свои комментарии, пожелания, задавайте вопросы, высказывайте свое мнение — нам это очень важно!
Метод увеличения производительности
Обычно, поэкспериментировав с небольшим количеством солнечных модулей, владельцы частных домов идут дальше и совершенствуют систему различными способами.
Самый простой способ – это увеличение количества задействованных модулей, соответственно, привлечение дополнительных площадей для их размещения и покупка более мощного сопутствующего оборудования
Что делать, если существует дефицит свободной площади? Вот несколько рекомендаций для повышения эффективности солнечной станции (с фотоэлементами или коллекторами):
Изменение ориентации модулей. Перемещение элементов относительно положения солнца. Проще говоря, установка основной части панелей на южной стороне. При длинном световом дне также оптимально задействовать поверхности, выходящие на восток и запад.
Регулировка угла наклона. Производитель обычно указывает, какой угол является наиболее предпочтительным (например, 45º), но порой при монтаже приходится вносить свои коррективы с учетом географической широты.
Правильный выбор места установки. Крыша подходит, потому что чаще всего является наивысшей плоскостью и не затеняется другими объектами (предположим, садовыми деревьями). Но существуют еще более подходящие площади – поворотные устройства слежения за солнцем.
При перпендикулярном расположении элементов к лучам солнца система работает более эффективно, однако на стабильно закрепленной поверхности (например, крыше) это возможно лишь на короткий промежуток времени. Чтобы его увеличить, придумали практичные устройства слежения.
Механизмы слежения – это динамические платформы, которые своей плоскостью поворачиваются вслед за солнцем. Благодаря им производительность генератора увеличивается летом примерно на 35-40%, зимой – на 10-12 %
Большим минусом устройств слежения является их высокая стоимость. В некоторых случаях она не окупается, поэтому нет смысла вкладываться в бесполезные механизмы.
Подсчитано, что 8 панелей – минимальное количество, при котором затраты со временем оправдают себя. Можно задействовать и 3-4 модуля, но при одном условии: если они напрямую, в обход аккумуляторов, подключены к водяному насосу.
Буквально на днях компания Тесла Моторс объявила о создании нового типа крыши – с интегрированными солнечными батареями. Илон Маск заявил, что модифицированная крыша будет дешевле, чем обычная кровля с установленными на нее коллекторами или модулями.
Классификация фотоэлектрических модулей
Сегодня производство солнечных батарей идёт двумя параллельными путями. С одной стороны на рынке присутствуют фотоэлектрические модули, созданные на основе кремния, а с другой — плёночные, созданные с использованием редкоземельных элементов, современных полимеров и органических полупроводников.
Популярные сегодня кремниевые фотоэлементы подразделяются на несколько типов:
- монокристаллические;
- поликристаллические;
- аморфные.
Для использования в самодельных солнечных батареях лучше всего использовать модули из поликристаллического кремния. Хоть КПД последних и ниже, чем у монокристаллических элементов, но зато на их работоспособность не так сильно влияет загрязнённость поверхности, низкая облачность или угол падения солнечных лучей.
Что же касается батарей из аморфного кремния, то они ещё менее зависимы от погодных условий и за счёт своей гибкости практически не подвержены риску повреждений при сборке. Тем не менее использование их в собственных целях ограничивается как достаточно низкой удельной мощностью на 1 квадратный метр поверхности, так и по причине высокой стоимости.
Кремниевые солнечные элементы представляют собой самый распространённый класс электрических фотопластин, поэтому они чаще всего используются для изготовления самодельных устройств
Появление плёночных фотоэлектрических модулей обусловлено как необходимостью в снижении стоимости солнечных батарей, так и потребностью получить более производительные и долговечные системы. Сегодня промышленность осваивает выпуск тонких гелиоэлектрических модулей на основе:
- теллурида кадмия с КПД до 12% и стоимостью 1 Вт на 20–30% ниже, чем у монокристаллов;
- селенида меди и индия — КПД 15–20%;
- полимерных соединений — толщина до 100 нм, с КПД — до 6%.
О возможности использования плёночных модулей для постройки электрической солнечной станции своими руками говорить пока ещё рано. Несмотря на доступную стоимость, изготовлением теллуридо-кадмиевых, полимерных и меде-индиевых фотоэлементов занимаются лишь отдельные компании.
Такие достоинства плёночных фотоэлементов, как высокий КПД и механическая прочность позволяют с полной уверенностью говорить, что за ними — будущее солнечной энергетики
Хоть в продаже и можно найти батареи, созданные по плёночной технологии, в большинстве своём они представлены в виде готовых изделий. Нам же интересны отдельные модули, из которых можно построить недорогую самодельную солнечную панель — на рынке они пока ещё в дефиците.
Сводные данные по КПД солнечных элементов, которые выпускаются промышленностью, представлены в таблице.
Таблица: КПД современных солнечных батарей
Тип фотоэлемента | Коэффициент полезного действия, % |
Монокристаллический кремний | от 17 до 22 |
Поликристаллический кремний | от 12 до 18 |
Аморфный кремний | от 5 до 6 |
Теллуридо-кадмиевые | от 10 до 12 |
На основе селенида меди-индия | от 15 до 20 |
Полимерный | от 5 до 6 |
Солнечная батарея из старых транзисторов
Те, кто занимается ремонтом радиоаппаратуры, со временем накапливают свой стратегический запас радиодеталей. Среди них могут оказаться транзисторы или диоды в металлическом корпусе. Для ремонта современных аппаратов они уже не подходят из–за больших габаритов, но собрать из старых транзисторов небольшую фотопанель — вполне реально.
Лучше всего из подручных материалов найти транзисторы типа КТ или П:
Чтобы добраться до фотоэлемента, необходимо аккуратно срезать ее верхнюю часть. Под ней и находится кремневый полупроводниковый элемент — фотоэлемент. Срезать крышечку можно, если зажать аккуратно деталь в тиски, ножовкой по металлу.
Под ней видна пластина. Именно она и будет основным элементом в будущей схеме.
Есть три выводных контакта:
- база;
- эмиттер;
- коллектор.
Нам нужен коллектор. Именно он обладает хорошей разностью потенциалов.
Соберите начальную цепочку по схеме:
Собирать все элементы необходимо на ровной поверхности из диэлектрического материала. Исходя из параметров будущей фотопанели, собирается последовательная цепочка из деталей. И потом набирается параллельная группа из таких цепочек.
Если один транзистор способен выдавать 0,35 В и силу тока при КЗ в 0,25 мкА, то подобрать расчетное количество цепочек из радиодеталей можно опираясь на эти характеристики.
Не стоит забывать, что собранная батарея из светодиодов будет нуждаться в охлаждении. Поэтому не рекомендуется размещать детали плотно и близко друг от друга. Так будет лучше работать естественная вентиляция.
Опытные мастера знают, что такая конструкция неудобна из–за больших габаритов. Гораздо практичней солнечная батарея из диодов своими руками.
В любом случае попробовать спаять альтернативный источник энергии есть смысл по двум причинам:
- Как минимум, будут пристроены старые радиодетали.
- От него можно запитать электронные часы или даже небольшой радиоприемник.
Как использовать фольгу
Фольгу также можно использовать для создания источника питания, однако энергии она будет давать немного. Подходит обычная фольга, размером 45 квадратных см. Ее необходимо промыть в мыльной воде, чтобы удалить любой жир. Вот пошаговая инструкция:
- Используя шкурку, удаляем любой вид коррозии.
- На электрическую плитку с мощностью от 1,1кВт кладем лист фольги, и нагреваем до тех пор, пока на ней не появятся оранжево-красные пятна. Если нагревать далее, пятна станут черные, что будет говорить об образовании оксида меди.
- Продолжаем нагревать еще минут 30, чтобы оксидная пленка стала нужной толщины. Выключаем горелку и даем листу остыть. Медленно остывая, оксид начинает отходить. Под проточной водой удаляем остатки оксида, не сгибая и не повреждая лист и тонкий слой окиси.
- Вновь вырезаем такой же кусок фольги – по размеру первого.
- Берем пластиковую бутылку, обрезаем горлышко и засовываем туда оба куска, закрепляя их зажимами. Они должны быть расположены так, чтобы не соединяться. К тому куску, который мы нагревали, проводим минусовую клемму, а ко второму – плюсовую.
В бутылку заливаем солевой раствор так, чтобы до кромки электродов оставалась примерно 2,5 см.
Схема солнечной батареи из фольги
Аккумулятор для дачи готов.
Конечно, такого самодельного прибора не хватит для обеспечения дома, но зато ее можно использовать для подзарядки мелких электроприборов или в виде питания радиоприемника.
Материалы для создания солнечной пластины
Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:
- силикатные пластины-фотоэлементы;
- листы ДСП, алюминиевые уголки и рейки;
- жёсткий поролон толщиной 1,5-2,5 см;
- прозрачный элемент, выполняющий роль основания для кремниевых пластин;
- шурупы, саморезы;
- силиконовой герметик для наружных работ;
- электрические провода, диоды, клеммы.
Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.
Теперь рассмотрим самые важные материалы более подробно.
Кремниевые пластины или фотоэлементы
Фотоэлементы для батарей бывают трёх видов:
- поликристаллические;
- монокристаллические;
- аморфные.
Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 – 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов – 10 лет.
Солнечную батарею собирают из модулей, которые в свою очередь составляют из фотоэлектрических преобразователей. Батареи с жесткими кремниевыми фотоэлементами представляют собой некий сэндвич с последовательно расположенными слоями, закрепленными в алюминиевом профиле
Монокристаллические фотоэлементы могут похвастаться более высоким КПД – 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.
Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.
Пленочные фотопреобразователи получают путем нанесения тонкого слоя аморфного кремния на полимерную гибкую поверхность
Гибкие батареи с аморфным кремнием – самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 – 6 %, но пленочные системы крайне удобны в укладке.
Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.
Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.
При покупке фотоэлементов поинтересуйтесь у продавца способом доставки, большинство продавцов используют метод воскования, чтобы предотвратить разрушение хрупких элементов
Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.
Каркас и прозрачный элемент
Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков.
Второй вариант более предпочтителен по целому ряду причин:
- Алюминий – лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
- При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
- Не впитывает влагу из окружающей среды, не гниёт.
При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение. От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин
От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.
Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта – оргстекла. Чуть ниже показатель преломления света у поликарбоната.
От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже – обычное стекло.
Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.
По соотношению стоимости к показателям преломления света и поглощения ИК-излучения оргстекло – самый оптимальный вариант для изготовления гелиобатареи
Схемы подключения системы
Схема подключения солнечных батарей состоит из нескольких устройств:
- Солнечная панель, которая будет аккумулировать свет, и преобразовывать его в электричество.
- Контроллер, который будет отслеживать уровень заряда в устройстве. Когда аккумуляторы заряжены, это приспособление автоматически отключает зарядку, а когда уровень заряда упадет, контроллер снова заработает.
- Аккумулятор, который нужен для сбора сгенерированной энергии.
- Инвертор – это устройство создает нужное напряжение для сети, получая из аккумулятора электроэнергию и преобразовывая её в 220 В.
Между всеми участниками сети должны быть обязательно установлены предохранители, дабы избежать короткого замыкания и поломки одного из устройств.
Если планируется использовать одну солнечную панель, то здесь всё понятно.
При установке же двух и более для начала необходимо выбрать одну из следующих схем подключения солнечных батарей загородного дома или квартиры:
- Параллельная. Такой способ укладки панелей происходит посредством соединения одноименных клемм. Напряжение при этом не меняется и остается на том же уровне.
- Последовательная. В такой схеме плюс одного из фотоэлементов подключается к минусу другого. Осуществить такое соединение достаточно просто, однако на выходе получится 24 В.
- Смешанная. Такая система состоит из нескольких групп. Элементы внутри группы соединяются параллельно, а крайние панели групп объединяются между собой последовательно.
Последняя параллельно-последовательная схема подключения солнечных батарей является оптимальной для того, чтобы сэкономить на приобретении контроллера, поскольку мощное устройство для такой схемы не понадобится. В такой системе создается баланс между высокими напряжениями, которые возникают при последовательном соединении и большими токами параллельной схемы.
Сборка
При первой сборке лучше воспользоваться заготовленной разметочной подложкой, помогающей расположить ровно элементы друг от друга. Основу выполняем из фанеры с обязательным маркированием уголков конструкции. После пайки на элемент батареи с обратной стороны крепим кусок ленты для монтажа, и таким образом их переносим. Герметизации подвергаются исключительно соединительные части.
Дальнейшие действия выглядят следующим образом:
- Выложите элементы на поверхность стекла.
- Между элементами оставьте расстояние и прижмите их грузами.
- Пайку сделайте по электрической схеме, то есть «Плюсовые» дорожки размещаются на лицевой стороне, а «минусовые» дорожки — на обратной стороне.
- Аккуратно припаяйте серебряные контакты.
- Соедините по этому принципу все элементы. В крайних элементах контакты выводят на шину «плюс» и «минус».
Рекомендуется также поставить «среднюю» точку, с двумя дополнительными шунтирующими диодами. Клемму устанавливают с внешней стороны нашей рамы. В качестве выводящих проводов можно использовать акустический кабель в изоляции. Все провода прочно фиксируются силиконом.
Грамотная конструкция системы позволит обеспечить необходимую мощность батареи. При расчете конструкции учитывают, что для изготовления одной солнечной батареи всегда берут солнечные модули только одного размера, так как в системе максимальный ток ограничен током самого малого элемента.
Стандартные расчеты показывают, что в солнечный день получают с 1 метра панели около 120 Вт мощности. Конечно, такая мощность не даст необходимого напряжения даже для компьютера. Но уже панель в 10 метров даст 1 кВт энергии и обеспечит энергией работу основных приборов дома: светильников, телевизора, холодильника и компьютера. Для обычной семьи из 4 человек необходимо в месяц около 300 кВт, поэтому система, установленная оптимально с южной стороны, размером 20 метров обеспечит семейные потребности в электроэнергии
С целью оптимизации потребления энергии для освещения важно использовать в доме лампочки переменного тока — светодиодные и люминесцентные
Где лучше установить панели?
Первое, что необходимо сделать перед тем, как установить и подключить солнечную батарею – определиться с местом размещения агрегата.
Для установки фотоэлектрических модулей удобно использовать стационарные конструкции, выполненные из металлических профилей, либо же более модернизированные поворотные аналоги
Солнечные батареи можно размещать практически в любой хорошо освещаемой точке:
- на крыше загородного коттеджа;
- на балконе многоквартирного дома;
- на прилегающей к дому территории.
Главное – обеспечить необходимые условия для получения максимальной выработки электроэнергии. Одним из таковых является ориентация и угол наклона относительно горизонта. Так светопоглощающая поверхность агрегата должна быть направлена в южную сторону.
В идеале солнечные лучи должны падать на нее под 90°. Чтобы добиться этого эффекта, необходимо подобрать оптимальный угол уклона в зависимости от климатических условий региона. Для каждого региона этот показатель свой.
Чтобы обеспечить максимальную производительность солнечных батарей, угол наклона устройств рекомендуется менять 2-4 раза в год: 18 апреля, 24 августа, 7 октября и 5 марта
К примеру, в московском регионе угол наклона размещения поверхности солнечных батарей для летних месяцев составляет 15-20°, а в зимние месяцы изменяется до отметки в 60-70°.
При размещении солнечных батарей на прилегающей к дому территории, панели лучше приподнять над поверхностью почвы как минимум на полметра – на случай выпадения большого количества снега. Такое решение правильно и в том плане, что обеспечивает достаточное расстояние для циркуляции воздуха.
Стоит помнить, что даже небольшая тень пагубно влияет на выработку электричества агрегатом. Панели нужно размещать лишь в местах, которые не подвержены даже малейшему затенению.
Некоторые «умельцы» с целью защиты батарей устанавливают сверху панелей дополнительное стекло, но даже при видимой прозрачности стеклянная прослойка способна снизить КПД панелей на 30%
Существует несколько способов фиксации панелей:
- посредством задействования прижимных фиксаторов;
- путем болтового соединения через сквозные отверстия, расположенные в нижней части рамки.
Опорная конструкция должна быть выполнена из корозионностойких материалов. Независимо от способа монтажа в конструкцию панелей нельзя самостоятельно вносить изменения и просверливать дополнительные отверстии.
Задача домовладельца – поддерживать панели в чистом виде. Скопления на экране пыли, снега и птичьего помета как минимум на 10% уменьшает количество электроэнергии, произведенной системой.
Комплектующие
Что необходимо для того, чтобы собрать простейшую солнечную батарею?
Во-первых, потребуются сами солнечные элементы, с помощью которых энергия нашего светила будет преобразовываться в электрическую. Производители предлагают различного рода элементы с разными размерами и разной мощностью. Чаще всего это устройства размерами 15×8 мм, такие небольшие пластинки. Чтобы собрать батарею мощностью 60 Вт, потребуется приблизительно около сорока приборчиков. Приплюсуйте сюда еще 10 штук про запас на случай излома. Солнечные элементы очень хрупкие.
- Во-вторых, понадобится оргстекло. Для этого надо будет два листа: один снизу, который будет выполнять функции основы батареи. Его толщина должна быть 4-6 мм. Кстати, нижнее оргстекло можно заменить фанерой. Второй слой – верхний толщиною 2 мм.
- В-третьих, крепежные детали: самоклеящийся двусторонний скотч, металлические (алюминиевые) уголки, клей, болты с гайками для крепления двух оргстекол между собой.
- В-четвертых, дополнительные электрические детали: припой (лучше всего легкоплавкий), флюс, диоды и так далее.
Коллекторная система отопления
Наибольшей эффективности и отдачи можно добиться, установив вместо солнечных модулей коллекторы – наружные установки, в которых под действием солнечного излучения происходит нагрев воды. Такая система является более логичной и естественной, так как не потребует нагревания теплоносителя другими устройствами.
Рассмотрим конструкцию и принцип действия приборов двух основных видов: плоских и трубчатых.
Плоский вариант для самостоятельного изготовления
Конструкция плоских установок настолько проста, что опытные мастера-умельцы собирают кустарные аналоги своими руками, часть деталей купив в специализированном магазине, часть соорудив из подручного материала.
Внутри стального или алюминиевого утепленного короба закреплена пластина, адсорбирующая солнечное тепло. Чаще всего она покрыта слоем черного хрома. Сверху теплопоглотитель защищен герметичной прозрачной крышкой.
Нагревание воды происходит в трубках, уложенных змейкой и соединенных с пластиной. Вода или антифриз поступает внутрь короба через впускной патрубок, нагревается в трубках и перемещается на выход – к выпускному патрубку.
Светопропускная способность крышки объясняется использованием прозрачного материала – прочного закаленного стекла или пластика (например, поликарбоната). Чтобы солнечные лучи не отражались, стеклянную или пластиковую поверхность матируют (+)
Существует два вида подключения, однотрубное и двухтрубное, принципиальной разницы в выборе нет. Но существует большая разница в том, каким способом теплоноситель будет подаваться к коллекторам – самотечным или с помощью насоса. Первый вариант признан неэффективным из-за слабой скорости передвижения воды, по принципу нагрева он напоминает емкость для летнего душа.
Функционирование второго варианта происходит благодаря подключению циркуляционного насоса, который подает теплоноситель в принудительном порядке. Источником энергии для работы насосного оборудования может стать энергосистема на солнечных батареях.
Температура теплоносителя при нагреве солнечным коллектором достигает 45-60 ºС, на выходе максимальный показатель – 35-40 ºС. Для повышения эффективности работы отопительной системы наряду с радиаторами используют «теплые полы» (+)
Трубчатые коллекторы – решение для северных регионов
Общий принцип работы напоминает функционирование плоских аналогов, но с одной разницей – теплообменные трубки с теплоносителем находятся внутри стеклянных колб. Сами трубки бывают перьевыми, запаянными с одной стороны и внешним видом напоминающие перья, и коаксиальными (вакуумными), вставленными друг в друга и запаянными с обеих сторон.
Теплообменники также бывают разными:
- система преобразования солнечной энергии в тепловую Heat-pipe;
- обычная трубка для перемещения теплоносителя U-type.
Второй вид теплообменников признан более эффективным, но недостаточно популярным из-за стоимости ремонта: при выходе из строя одной трубки придется производить замену всей секции.
Трубка Heat-pipe не является частью целого сегмента, поэтому поменять ее можно за 2-3 минуты. Вышедшие из строя коаксиальные элементы ремонтируют, просто сняв заглушку и заменив поврежденный канал.
Схема, объясняющая цикличность нагревательного процесса внутри вакуумных трубок: холодная жидкость под воздействием солнечного тепла нагревается и испаряется, уступая место следующей порции холодного теплоносителя (+)
Проанализировав технические характеристики коллекторов разного типа и обобщив опыт их использования, решили, что для южных областей больше подходят плоские коллекторы, а для северных – трубчатые. Особенно хорошо зарекомендовали себя в условиях сурового климата установки с системой Heat-pipe. Они обладают нагревательной способностью даже в пасмурные дни и ночью, «питаясь» минимальным количеством солнечного света.
Образец стандартной схемы подключения солнечных коллекторов к бойлерному оборудованию: насосная станция обеспечивает циркуляцию воды, контроллер регулирует процесс нагревания
Особенности расчета мощности систем
Перед тем как закупить комплектующие и сделать солнечную панель, рассчитывают необходимую мощность прибора и емкость аккумулятора.
Самый простой способ – воспользоваться онлайн-калькуляторами, размещенными на некоторых сайтах в интернете.
Количество энергии, заявленное в техническом паспорте изделия, рассчитано для идеальных условий. На них невозможно ориентироваться, ведь устройства работают по-разному в зависимости от времени года и суток. Потери энергии происходят постоянно, в т.ч. в аккумуляторах, инверторе (+)
Важнейший показатель, который придется учитывать, – среднемесячное количество потребляемой энергии. Его можно определить по счетчику.
Также следует сделать скидку на особенности работы самих солнечных батарей. Они способны выдавать предельную мощность лишь при условии чистого неба, причем угол падения солнечных лучей должен быть прямым.
Если погода пасмурная или угол падения лучей слишком острый, мощность батарей может упасть в 20 раз. Даже малейших облаков достаточно, чтобы вдвое снизить показатели. Поэтому при расчетах ориентируются на то, что 70% энергии будет вырабатываться с 9 до 16 часов, а в остальное время – до 30%.
Зимой от гелиосистем мало пользы: из-за пасмурной погоды они вырабатывают минимальное количество энергии. Зато ветрогенераторы работают на полную мощность и способны компенсировать эти потери. Комбинация двух таких устройств очень эффективна
В условиях, приближенных к идеальным, в «рабочее время» панели мощностью 1кВт вырабатывают 7 кВт/ч, а ранним утром и вечером – около 3 кВт/ч. Второй показатель лучше вообще не брать в расчет и оставить «про запас» с учетом возможной облачности и изменения угла падения лучей.
Получается, что следует ориентироваться на 210 кВт/ч в течение 1 календарного месяца. Это идеальный показатель, который требует корректировки.
На Еbay можно найти неплохой набор для изготовления солнечной батареи своими руками. Иногда это устройства, которые отбраковали на производстве (т.н. модули В-типа). Они дешевы, но вполне пригодны для сборки домашней системы, поскольку эксплуатационные характеристики близки к заявленным
Чтобы определиться с реальным количеством энергии, следует найти данные о том, сколько солнечных дней в году бывает в конкретном регионе. В эти периоды мощность батарей не будет составлять даже половины от паспортного показателя. Если устройства будут работать осенью и зимой, то нужно сделать поправку в 30-50% на пасмурную погоду.