1 квадратный метр это сколько метров?

Площадь комнаты в квадратных метрах

Посчитать несложно, требуется только вспомнить простейшие формулы а также провести измерения. Для этого нужны будут:

  • Рулетка. Лучше — с фиксатором, но подойдет и обычная.
  • Бумага и карандаш или ручка.
  • Калькулятор (или считайте в столбик или в уме).

Набор инструментов нехитрый, найдется в каждом хозяйстве. Проще измерения проводить с помощником, но можно справиться и самостоятельно.

Для начала надо измерить длину стен. Делать это желательно вдоль стен, но если все они заставлены тяжелой мебелью, можно проводить измерения и посередине. Только в этом случае следите чтобы лента рулетки лежала вдоль стен, а не наискосок — погрешность измерений будет меньше.

Прямоугольная комната

Если помещение правильной формы, без выступающих частей, вычислить площадь комнаты просто. Измеряете длину и ширину, записываете на бумажке. Цифры пишите в метрах, после запятой ставите сантиметры. Например, длина 4,35 м (430 см), ширина 3,25 м (325 см).

Как высчитать площадь комнаты

Найденные цифры перемножаем, получаем площадь комнаты в квадратных метрах. Если обратимся к нашему примеру, то получится следующее: 4,35 м * 3,25 м = 14,1375 м². В данной величине оставляют обычно две цифры после запятой, значит округляем. Итого, рассчитанная квадратура комнаты 14,14 квадратных метров.

Помещение неправильной формы

Если надо высчитать площадь комнаты неправильной формы, ее разбивают на простые фигуры — квадраты, прямоугольники, треугольники. Потом измеряют все нужные размеры, производят расчеты по известным формулам (есть в таблице чуть ниже).

Перед тем как посчитать площадь комнаты, тоже проводим изменения. Только в этом случае цифр будет не две, а четыре: добавится еще длина и ширина выступа. Габариты обоих кусков считаются отдельно.

Один из примеров — на фото. Так как и то, и другое — прямоугольник, площадь считается по той же формуле: длину умножаем на ширину. Найденную цифру надо отнять или прибавить к размеру помещения — в зависимости от конфигурации.

Площадь комнаты сложной формы

Покажем на этом примере как посчитать площадь комнаты с выступом (изображена на фото выше):

  1. Считаем квадратуру без выступа: 3,6 м * 8,5 м = 30,6 м².
  2. Считаем габариты выступающей части: 3,25 м * 0,8 м = 2,6 м².
  3. Складываем две величины: 30,6 м². + 2,6 м². = 33,2 м².

Еще бывают помещения со скошенными стенами. В этом случае разбиваем ее так, чтобы получились прямоугольники и треугольник (как на рисунке ниже). Как видите, для данного случая требуется иметь пять размеров. Разбить можно было по-другому, поставив вертикальную, а не горизонтальную черту

Это не важно. Просто требуется набор простых фигур, а способ их выделения произвольный

Как посчитать площадь комнаты неправильной формы

В этом случае порядок вычислений такой:

  1. Считаем большую прямоугольную часть: 6,4 м * 1,4 м = 8,96 м². Если округлить, получим 9, 0 м².
  2. Высчитываем малый прямоугольник: 2,7 м * 1,9 м = 5,13 м². Округляем, получаем 5,1 м².
  3. Считаем площадь треугольника. Так как он с прямым углом, то равен половине площади прямоугольника с такими же размерами. (1,3 м * 1,9 м) / 2 = 1,235 м². После округления получаем 1,2 кв. м.
  4. Теперь все складываем чтобы найти общую площадь комнаты: 9,0 + 5,1 + 1,2 = 15,3 м².

Планировка помещений может быть очень разнообразной, но общий принцип вы поняли: делим на простые фигуры, измеряем все требуемые размеры, высчитываем квадратуру каждого фрагмента, потом все складываем.

Формулы расчета площади и периметра простых геометрических фигур

Еще одно важное замечание: площадь комнаты, пола и потолка — это все одинаковые величины. Отличия могут быть если есть какие-то полу-колоны, не доходящие до потолка

Тогда из общей квадратуры вычитается квадратура этих элементов. В результате получаем площадь пола.

Что такое площадь комнаты

Определение площади является одной из основных геометрических задач. Рассчитать площадь пола не составит труда, поскольку комнаты в наших жилищах в большинстве случаев представляют собой правильные прямоугольники. Они либо квадратные, когда все стороны имеют одинаковую длину, либо прямоугольные. А прямоугольник — такая фигура, посчитать квадратуру которой очень просто. Просто перемножив длину и ширину комнаты, вы узнаете площадь полов в ней. То есть нужно сделать всего два замера. При этом необязательно измерять именно стену. Это не всегда удобно из-за мебели или выступов или проемов. Производить измерения можно в любом месте, следя лишь за тем, чтобы лента рулетки была натянута параллельно стене. После того как значения длины и ширины получены, возьмите калькулятор и умножьте одно число на другое. Это самый простой способ определить квадратные метры пола. Все размеры должны быть в одних единицах, умножать метры на сантиметры нельзя, так как получится ответ с непонятной размерностью. Поэтому все измерения необходимо производить в метрах.

Как рассчитать площадь комнаты – пошаговая инструкция

При расчете площади нужно знать длину, ширину и высоту комнаты

Можно, конечно, заглянуть в техническую документацию дома и посмотреть в ней все нужные характеристики. Но, во-первых, там нередко бывают ошибки, во-вторых, иногда проще вычислить всё самостоятельно, чем найти документы.

Для проведения подсчётов нам понадобятся определённые инструменты, большинство из которых можно запросто найти в каждом доме. А именно:

  • рулетка;
  • карандаш;
  • бумага для записей;
  • калькулятор (можно использовать калькулятор, который размещён на нашем сайте);
  • трезвость ума и ясность мыслей.

Пол

Чтобы высчитать квадратуру пола в прямоугольной или квадратной комнате, необходимо узнать её длину и ширину.

Проводить замеры лучше у основания стен, а для этого желательно отодвинуть или вынести всю мебель. Но, если такая процедура в ваши планы не входила, можно мерить и по центру. Главное при этом, чтобы воображаемая линия, по которой будет производиться измерение, располагалась под углом в 90° к стене.

После того как данные замеров получены и проверены, их нужно перемножить по формуле , где S — площадь в квадратных метрах, a и b — длина и ширина, соответственно.

Если к основному помещению прилегает ниша или какое-нибудь другое — его площадь необходимо вычислить по тому же алгоритму, и результаты приплюсовать к площади комнаты. Если есть различные выступы, которые занимают его часть — их также следует измерить и полученный результат вычесть из общего.

С квадратами и прямоугольниками всё просто. А как посчитать S комнаты, если она имеет неправильную форму? Здесь придётся применить логическое мышление, и немного вспомнить школьный курс алгебры и геометрии. Но давайте по порядку.

Если помещение неправильной формы

Постарайтесь мысленно или на бумаге разделить комнату на простые элементы (квадраты, прямоугольники, треугольники). Далее, нужно будет высчитать размеры каждого из них, и результаты сложить.

  • для треугольника — . Где a — длинна основания треугольника, b — высота, проведённая от вершины к основанию;
  • для круга — . Где 3,14, r — радиус круга (чтобы узнать радиус — найдите с помощью рулетки самое длинное расстояние между стенами и разделите его на 2);
  • для полукруга — (буквенные обозначения совпадают с предыдущим пунктом).

Как оказалось, и в таком случае ничего сложного нет. Главное, тщательно проверять результаты замеров, чтобы в расчёты не закралась случайная ошибка, и их не пришлось производить заново.

И ещё. Если вы хотите произвести монтаж тёплого пола, не забудьте отдельно вычислить площадь, которую занимает мебель, и вычтите её из общего значения для помещения.

С полом мы разобрались. Но при подготовке, допустим, к переклеиванию обоев это вам мало чем поможет. Нужно будет узнать точное количество квадратных метров, которое занимают  стены.

Стены

Площадь каждой отдельно взятой стены можно высчитать так же, как и квадратуру пола. Только теперь вместо ширины помещения нужно будет измерить её высоту. Множим длину стены на высоту и получаем необходимый нам результат в квадратных метрах.

Измерение высоты лазерной рулеткой

А можно вычислить и для всех стен сразу. Для этого вам понадобится узнать периметр пространства. Возьмите рулетку и измерьте длину каждой стены, результаты сложите — это и будет периметр. Остаётся измерить высоту комнаты и воспользоваться следующей формулой: , где p — периметр, а h — высота.

Теперь необходимо разобраться с оконными, дверными и прочими проёмами, присутствующими в помещении.

Точнее, рассчитать площадь каждого из них (по формулам, представленным выше, в зависимости от формы проёма), результаты суммировать и вычесть из общего количества.

Существует также ряд общих рекомендаций по проведению замеров.

Площадь квадрата

Из младших классов известно, что для вычисления площади квадрата достаточно умножить его сторону саму на себя. Докажем это строго, используя лишь свойства площадей.

Попробуем вычислить площадь квадрата, если известна его сторона. Если она равна 2, то квадрат можно разбить на четыре единичных квадрата, а если она равна 3, то квадрат можно разделить уже на девять единичных квадратов:

Тогда площадь квадрата со стороной 2 равна 4, а со стороной 3 уже равна 9. В общем случае квадрат со стороной n (где n– натуральное число) можно разбить n2 единичных квадратов, поэтому его площадь будет равна n2.

Но что делать в случае, если сторона квадрата – это не целое, а дробное число? Пусть оно равно некоторой дроби 1/m, например, 1/2 или 1/3. Тогда поступим наоборот – разделим сам единичный квадрат на несколько частей. Получится почти такая же картина:

В общем случае единичный квадрат можно разбить на m2 квадратов со стороной 1/m. Тогда площадь каждого из таких квадратов (обозначим ее как S)может быть найдена из уравнения:

Снова получили, что площадь квадрата в точности равна его стороне, возведенной во вторую степень.

Наконец, рассмотрим случай, когда сторона квадрата равна произвольной дроби, например, 5/3. Возьмем квадраты со стороной 1/3 и построим из них квадрат, поставив 5 квадратов в ряд. Тогда его сторона как раз будет равна 5/3:

Площадь каждого маленького квадратика будет равна 1/9, а всего таких квадратиков 5х5 = 25. Тогда площадь большого квадрата может быть найдена так:

В общем случае, когда дробь имеет вид n/m, где m и n– натуральные числа, площадь квадрата будет равна величине

Получили, что если сторона квадрата – произвольное рациональное число, то его площадь в точности равна квадрату этой стороны. Конечно, возможна ситуация, когда сторона квадрата – это иррациональное число. Тогда осуществить подобное построение не получится. Здесь помогут значительно более сложные рассуждения, основанные на методе «от противного».

Предположим, что есть некоторое иррациональное число I, такое, что площадь квадрата (S) со стороной I НЕ равна величине I2. Для определенности будем считать, что I22>S, рассматривается абсолютно аналогично). Однако тогда, извлекая корень из обеих частей неравенства, можно записать, что

Далее построим два квадрата, стороны которых имеют длины I и R, и совместим их друг с другом:

Так как мы выбрали число R так, чтобы оно было больше I, то квадрат со стороной I является лишь частью квадрата со стороной R.Но часть меньше целого, значит, площадь квадрата со стороной I (а она равна S) должна быть меньше, чем площадь квадрата со стороной R (она равна R2):

из которого следует противоположный вывод – величина R2 меньше, чем S. Полученное противоречие показывает, что исходная утверждение, согласно которому площадь квадрата со стороной I НЕ равна I2, является ошибочным. А значит, площадь квадрата всегда равна его стороне, умноженной на саму себя.

Задание. Найдите площадь квадрата, если его сторона равна

Задание. Площадь квадрата равна 25. Найдите длину его стороны.

Решение. Пусть сторона квадрата обозначается буквой х (как неизвестная величина). Тогда условие, согласно которому его площадь равна 25, можно переписать в виде уравнения:

Его простейшее квадратное уравнение, для его решения надо просто извлечь квадратный корень из правой части:

Примечание. Строго говоря, записанное уравнение имеет ещё один корень – это число (– 5). Однако его можно отбросить, так как длина отрезка не может быть отрицательным числом. В более сложных геометрических задачах отрицательные корни также отбрасывают.

Задание. Численно площадь квадрата равна периметру квадрата (с учетом того, что площадь измеряется в см2, а периметр – в см). Вычислите его площадь.

Решение. Снова обозначим сторону квадрата как х, тогда площадь (S)и периметр (Р) будут вычисляться по формулам:

По условию эти величины численно равны, поэтому должно выполняться равенство, являющееся уравнением:

Естественно, сторона квадрата не может быть равна нулю, поэтому нас устраивает только ответ х = 4. Тогда и площадь, и периметр будут равны 16.

Ответ: 16 см2.

Обратите внимание, что ответ задачи зависит от единицы измерения. Если использовать миллиметры, то сторона квадрата окажется равной 40 мм, периметр будет равен 160 мм, а площадь составит 1600 мм2

Именно поэтому в условии задачи сказано, что площадь и периметр равны численно. «По-настоящему» равными бывают только величины, измеряемые в одинаковых единицах измерения.

Расчет площади пола в комнате неправильной формы

У комнат, имеющих неправильную форму, рассчитать площадь намного сложнее. Сложности добавляют такие элементы, как арки, ниши в форме полукруга, скошенные стены и т. д. По сути, принцип расчета тот же – нужно разбить помещение на несколько ровных фигур и высчитать площадь каждой отдельно, а потом суммировать. Но площадь круга или треугольника считается уже по другим формулам.

Пол неправильной формы

Например, площадь треугольника высчитывается так: длина основания умножается на высоту треугольника и делится на 2.

Расчет площади комнаты неправильной формы

Площадь многоуровневых полос посчитать не так сложно, как кажется. Просто считаются площади отдельных сегментов и суммируются. Если ступени необходимо отделать таким же напольным материалом, как и остальной пол, то достаточно измерить площадь боковой части каждой ступени и приплюсовать к общей цифре.

Если комната имеет формулу трапеции, то высчитать ее площадь можно без дележки помещения на простые фигуры. Формула трапеции вычисляется так: длина верхней границы (более короткой стороны – а) суммируется с длиной нижней границы (b), затем умножается на высоту трапеции (h) и полученный результат делится на два. Площадь четырехугольника с равными сторонами рассчитать можно по формуле: S = а (длина длинной стороны) х h (высота четырехугольника).

Расчет площадей разных геометрических фигур

Формулы расчетов

Если треугольник не прямой, то рассчитать его площадь можно с помощью формулы Герона

Какие инструменты применяют для расчета площадей?

Используем программу — 3D редактор

Устанавливаем на компьютер программу-редактор, например, ArchiCAD, AutoCAD, SketchUp. Рисуем
комнату по размерам, получаем данные, выделяя нужные фрагменты.

Преимущество: не надо считать вручную. Удобно использовать
для определения площадей в комнатах с неправильной и сложной геометрией.

Недостаток: нужно потратить время на изучение программ. И без компьютера или планшета не обойтись.

Считаем вручную

Размеры записываем на листике, смартфоне, куске гипсокартона или стене. Для расчетов используем калькулятор, табличный редактор (Exel), или считаем в столбик.

Преимущество: можно посчитать прямо на объекте, при необходимости — уточнить размеры. Достаточно иметь карандаш и умную голову.

Недостаток: легко ошибиться, пропустить размер, посчитать что-либо два раза.

Рассчитать площадь пола

По полу так же можно рассчитать площадь помещения. При этом лучше, чтобы все стены в нём и пол были свободны. Если комната прямоугольная, следует просто перемножить размеры двух сторон пола. Но даже в таком случаи, они могут иметь небольшие различия в размере, поэтому надо снять мерки со всех сторон пола. Нужно делать замеры по поверхности пола, не рекомендовано замерять по стенкам — они могут иметь неровности.

При неправильной конфигурации помещения, пол делится на правильные фигуры. После чего, считается размер каждой фигуры. Для наглядности рекомендовано нарисовать схематичный чертёж со всеми размерами. Если пол двухуровневый, его так же необходимо зонировать.

Предназначение вычислений размера пола играет важную роль. Допустим, если расчёт требуется для установки тёплого пола, то нет надобности учитывать места, где будет размещаться тяжёлая мебель. А если для определения — сколько необходимо напольного покрытия, чтобы застелить всю поверхность пола — то высчитывается размер в полном объёме. 

При расчёте габаритов, нет надобности в соблюдении размеров до сантиметра, допустимо производить округления. Проверить, правильно ли вы подсчитали площадь пола можно на онлайн-калькуляторе.

Виды треугольников

Треугольник представляет собой многоугольник, который имеет три стороны и может быть отнесен к следующим типам:

  • Равносторонний треугольник имеет равные стороны и равные углы.
  • Равнобедренный треугольник имеет две равные стороны и два равных угла.
  • Разносторонний треугольник имеет три неравные стороны и три неравных угла.
  • Прямоугольный треугольник имеет один прямой угол 90 градусов.
  • Остроугольный треугольник имеет все углы меньше 90 градусов.
  • Тупоугольный треугольник имеет один угол больше 90 градусов.

Площадь любого треугольника определяется по формулам.

1. Как рассчитать площадь треугольника, если известны высота и основание треугольника:

  • S=1⁄2×a×h, где: h – высота, a — основание.
  • S=1⁄2xa×b×sinα, где: a, b – любые две стороны, α — угол между ними.
  • S=p×r, где: p = (a+b+c) / 2 — полупериметр, a, b, c – три стороны, r – радиус круга.

Площадь равностороннего треугольника:

S=a2х√3 ⁄4 , где a=b= c.

Площадь равнобедренного треугольника:

S=1⁄4xbx√(4a2-b2).

2. Как рассчитать площадь треугольника, если заданы две стороны и угол между ними:

S=1⁄2xaxbxsinC=1⁄2xbxcxsinA =1⁄2xaxcxsinB.

Пример 1: Найти S треугольника, сторона которого составляет 14 см, а высота — 10 см.

Решение: b=14 см, h=10 см, A=1⁄2х14х10=70

Ответ: 70 см2.

Пример 2. Найти область треугольника, стороны которого и угол между ними заданы следующим образом: a=5 см и b=7 см, C=45 градусов.

Решение: Площадь треугольника =1⁄2xaxbxsin 45.

Площадь =1⁄2×5×7×0,707 (поскольку sin45=0,707)

Площадь =1⁄2×24,745=12,3725

Ответ: 12,3725 см2.

Пример 3. Найдите площадь (в м2) равнобедренного треугольника, стороны которого составляют 10 м, а основание — 12 м.

Решение: Площадь равнобедренного треугольника определяется:

A=1⁄4xbx√(4a2-b2)A=1⁄4х12х√(4х(10)2-(12)2)А=48

Ответ: 48 м2.

Пример 4. Найти площадь треугольника, стороны которого равны 8, 9 и 11 соответственно. Все единицы измерения даны в метрах (м).

Решение: Стороны a=8, b=9 и c=11. Согласно формуле Херона площадь треугольника может быть определена по следующей формуле: A=√(sx(sa)х(sb)х(sc)). Прежде всего нам нужно определить s, которая является полупериметром треугольника: s =1⁄2х(a+b+c)=1⁄2х(8+9+11)=14.

Теперь, вставив значение полупериметра в формулу Герона, можно определить площадь треугольника: A=√(sx(sa)х(sb)х(sc)). A=√(14х(14-8)х(14-9)х(14-11)). A=√(1260)=35,50

Ответ: 35,50 м2.

Для чего необходимо знать площадь комнаты и что потребуется для расчетов?

В каких же случаях необходимо рассчитывать площадь комнаты?

Конечно, в первую очередь для определения количества расходных материалов для ремонта. Многие закупают их с запасом, а излишки возвращают в магазин. Однако в данном случае теряется много времени, к тому же не все магазины предоставляют такую услугу. Поэтому целесообразней правильно высчитать площадь всех поверхностей перед покупками.

Чтобы у вас не осталось много обрезков, правильно рассчитайте площадь стен, которые требуют оклейки

  • Кроме того, зная площадь, проще распланировать свой бюджет. Ведь даже стоимость работ наемных работников в большинстве случаев зависит от того, сколько квадратных метров они должны обработать.
  • Количество осветительных приборов также зависит от площади. Однако в большинстве случаев к сложным расчетам при выборе светильников не прибегают, данный вопрос обычно решается опытным путем.

Пример недостаточного освещения в ванной комнате

И последнее. Одна из главных величин в квартире – объем помещений (при этом необходимо площадь умножить на высоту), ведь в зависимости от него подбирают климатическое оборудование.

Мощность кондиционера в первую очередь зависит от объема помещения

Таким образом, существует огромное количество причин, по которым необходимо правильно высчитать площадь помещения. Но с чего же начать? Сначала нужно подготовить измеряемое помещение и инструменты.

Измерения желательно проводить в полностью освобожденном помещении. Если такой возможности нет, расчистите хотя бы участки около стен, ведь именно вдоль них будут проводиться замеры.

Обязательно отодвиньте всю крупную мебель от стен, которые вы будете измерять

Итак, для определения площади помещения необходимы следующие приспособления:

  1. Рулетка. Конечно, электронное приспособление удобней, но оно имеет большую погрешность. Кроме того, такой рулеткой не измерить сложные формы, при работе с выступающими элементами также могут возникнуть проблемы. Поэтому оптимальный набор – простая рулетка и линейка. Главное – проверить их точность, так как многие старые или детские приспособления имеют приличную погрешность.
  2. Карандаш.
  3. Листок бумаги для вычислений и записи результатов.
  4. Калькулятор.

Кроме того, вам может понадобиться длинная линейка для проверки ровности стен.

Полезные советы

И напоследок, несколько общих советов от специалистов.

Чтобы выполнить более точные замеры комнат или помещений, специалисты рекомендуют проводить замеры, как минимум в трех точках (с краев и посередине стены). Получив как минимум три измерения, необходимо высчитать их среднее арифметическое, которое считается по формуле: a = a1 x a2 x a3 / n. Где a – среднеарифметическая длина (ширина или высота), a1, a2, a3 – длина (ширина или высота) измеренная в каждой из трех точке, n – количество измеренных линий (в данном случае их три).

Как правило, не во всех домах сейчас идеально квадратные или прямоугольные комнаты. Поэтому дополнительный, расчет позволит вам избежать, возможных погрешностей в подсчетах. Так же необходимо учесть возможные «неправильные» формы проемов окон и дверей.

В расчете площади помещения нет ничего сложного

Важно не спешить, когда будете делать замеры, ведь допустив ошибку, придется делать все заново

Как высчитать площадь стен

Watch this video on YouTube

Запомните, что любую измерительную работу нужно выполнять ответственно, ведь допустив ошибки, неправильно посчитанная вами площадь, приведет к дополнительным затратам, а это не самая большая неприятность из всех возможных. Удачи Вам с измерениями и подсчетами!

Поделиться
Твитнуть
Запинить
Нравится
Класс
WhatsApp
Viber
Телеграмка

Считаем количество плитки

Зная площадь комнаты, рассчитать количество напольного покрытия будет несложно. Разберемся, как выяснить, сколько плитки понадобится для конкретной комнаты. Для этого нужно узнать, какова площадь одного элемента плиточного покрытия. Зная эти данные, легко произвести необходимые расчеты. Например:

  • площадь комнаты – 15 м2;
  • размер одной единицы плитки – 0,20х0,30 м.

Расчет количества плитки на пол

Таким образом, площадь одной плитки составит 0,2х0,3 = 0,06 м2. Далее общую площадь комнаты делим на площадь одной плитки и получаем: 15/0,06 = 250 единиц. Именно столько плиток потребуется, чтобы закрыть весь черновой пол в данном помещении. Точно таким же методом вычисляется и количество ламината или паркетной доски, а также других материалов.

Видео – Рассчитываем линолеум

Чтобы высчитать площадь пола в комнате, а затем – и расход материала, достаточно знать элементарные математические формулы и уметь пользоваться калькулятором. Имея последний под рукой (а сейчас калькулятор есть в каждом телефоне), произвести расчеты можно быстро. Главное – быть внимательными при снятии замеров.