Кинетический ветрогенератор: устройство, принцип работы, применение

География применения

Наибольшее распространение ветроэнергетика получила на западном побережье Атлантики, в частности, в Германии. Там имеются наилучшие условия — ровные и сильные ветра, оптимальные климатические показатели. Но основной причиной широкого распространения ВЭС именно в этом регионе стало отсутствие возможностей для строительства гидроэлектростанций, вынудившее правительства стран этого региона использовать доступные методы получения электроэнергии. При этом, имеются установки и в балтийском регионе, в Дании, Голландии.

Россия пока отстает в этом вопросе, за прошедшее десятилетие в эксплуатацию сдан едва ли десяток ВЭС. Причина такого отставания кроется в большом развитии гидроэнергетики и отсутствии должных условий для эксплуатации промышленных ветроэнергетических станций. Тем не менее, отмечается рост производства небольших установок, способных обеспечивать энергией отдельные усадьбы.

Ветрогенератор

Работа ветрогенератора Промышленные ветрогенераторы в Северном море Ветер раскручивает ротор. Выработанное электричество подаётся через контроллер на аккумуляторы. Инвертор преобразует напряжение на контактах аккумулятора в пригодное для использования

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) — устройство для преобразования кинетической энергии ветрового потока в механическую энергию вращения ротора с последующим её преобразованием в электрическую энергию.

Ветрогенераторы можно разделить на три категории: промышленные, коммерческие и бытовые (для частного использования).

Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветровая электростанция. Её основное отличие от традиционных (тепловых, атомных) — полное отсутствие, как сырья, так и отходов

Единственное важное требование для ВЭС — высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 8 МВт

Мощность ветрогенератора зависит от мощности воздушного потока ( N {\displaystyle N} ), определяемой скоростью ветра и ометаемой площадью N = p S V 3 / 2 {\displaystyle N=pSV^{3}/2} ,

где: V {\displaystyle V} — скорость ветра, p {\displaystyle p} — плотность воздуха, S {\displaystyle S} — ометаемая площадь.

Необычные конструкции ветрогенераторов

Среди широкого ряда конструкций ветряков встречаются устройства весьма специфического вида. При этом, они полностью функциональны и выполняют свою работу на достаточно высоком уровне (для опытных или пилотных образцов). Некоторые конструкции совершенно выбиваются из общего ряда и обладают уникальными свойствами, другие намного ближе к традиционным формам. Рассмотрим их поближе:

Устройство на водяных каплях

Из необычных ветрогенераторов этот — самый необычный. Он не похож ни на одну известную конструкцию. Он даже не имеет вращающихся частей. Представляет собой раму, внутри которой расположены горизонтально трубки с водой. На поверхности трубок имеются сопла, из которых выпускаются капли воды, заряженной положительно при помощи электродов, находящихся внутри трубок. При порыве ветра капли попадают на противоположные электроды, изменяя их заряд, что вызывает возникновение электрического тока в системе.

Дизайнерский ветрогенератор revolution air

Этот ветрогенератор создан, по сути, с декоративными целями. Его свойства таковы, что пользоваться им как полноценным устройством вряд ли получится. Для запуска ему нужна скорость потока от 14 м/сек, а при минимальной цене в 2500 евро такие характеристики нельзя рассматривать как нормальные рабочие параметры. Устройство имеет оригинальный внешний вид, хотя, по сути, является переосмысленным в художественном смысле вариантом ветрогенератора ортогонального типа.

Парусный ветрогенератор

Основное достоинство такой установки — это способность работать при небольшом ветре от 0,5 м/с. Парусный ветрогенератор устанавливается в любом месте, на любой высоте.

Парусный ветрогенератор

Из преимуществ можно выделить: маленькую скорость ветра, быструю реакцию на ветер, легкость конструкции, доступность материала, ремонтопригодность, возможность изготовить ветряк своими руками. Недостаток — это возможность поломки при сильном ветре.

Конструкция Третьякова

Ротор ветрогенератора Третьякова имеет довольно сложную конструкцию, хотя, по сути, он является разновидностью ротора с диффузором. Устройство имеет вертикальный ротор-крыльчатку. Вокруг нее располагается подвижный воздухоприемник со стабилизатором, автоматически устанавливающим конструкцию по ветру. Воздухоприемник имеет также ряд направляющих, организующих поступление потока в нужном направлении.

Воздух, попадая внутрь корпуса, обходит рабочее колесо снизу и направляется к лопаткам. Такой сложный путь потока способствует получению правильного направления струи и отсутствию противодействующего контакта с обратными сторонами лопастей. Ротор способен начинать вращение при ветре от 1,4 м/сек, что очень ценно в условиях нашей страны, не отличающейся сильными и ровными ветрами.

Летающий ветрогенератор-крыло

Идея создания такой конструкции опирается на тот факт, что на высоте потоки ветра более активны и имеют большие скорости. Разработчики используют приспособление, напоминающее гигантский воздушный змей, который поднимается на большую высоту и летает по заранее задуманной траектории, вырабатывая электрический ток. Устройство позволяет отказаться от создания высоких мачт, поднимать ветряк на большие высоты и обеспечивать максимально возможные скорости ветра.

Ветровые электростанции преимущества и недостатки

Преимущества установки ветровых электростанций:

  1. Экологичность. Сегодня этот фактор играет большую роль. А добыча энергии с помощью ветряков это экологичный способ, который никак не влияет на окружающую природу.
  2. Экономичность. По сравнению с другими источниками получения энергии, ветровые станции в строительстве обходятся намного экономичнее.
  3. Нескончаемый источник энергии.
  4. Эффективность работы — электростанция вырабатывает в 80 раз больше энергии, чем потребляет.
  5. Местоположение. Ветряк можно поставить в любом месте, в отличие от традиционных станций.
  6. Современные ветряки могут работать при скорости от 3,5 м/с.
  7. Технологическое развитие.

Минусы ветроэнергетики:

  1. Работа ветряка зависит от силы потока ветра, которого может и не быть.
  2. Изменение ландшафта местности из-за строительства ветряных парков.
  3. Затраты на поиск и изучение местности для ветряков и их строительство.
  4. Турбины станций создают низкочастотные шумы, которые оказывают негативное влияние на человека.
  5. Создают опасность для птиц.
  6. Менее продуктивны по сравнению с другими станциями.

У ветроэнергетики есть свои сторонники, которые считаю применение ветрогенераторов экологичным способом решения проблемы с энергетикой. Но также есть люди, которые выступают против строительства ветряных парков, так как они приносят вред здоровью человека, птицам. Недостатки ветроэнергетики не сопоставимы с большим потенциалом, который кроется в этой отрасли.

Конструкция и принцип работы ветротурбин

Ветровые генераторы представляют собой спецустройства, которые трансформируют кинетическую энергию ветра в электрическую. Это независимые источники электроэнергии, которые отлично подходят для установки в частных жилых домах, на небольших и средних фермерских хозяйствах, производственных базах.

Конструкция стандартной мини-электростанции для бытового использования включает такие функциональные элементы:

  1. Лопасти аэродинамической формы для улавливания ветра.
  2. Генератор для продуцирования переменного тока.
  3. Контроллер для автоматического управления ветряной станцией. Позволяет регулировать подзарядку аккумуляторов, распределяет потоки энергии между устройствами.
  4. Накопитель. Специальные аккумуляторные батареи для накопления сгенерированного электричества.
  5. Инвертор для приведения параметров вырабатываемой энергии к сетевым стандартам.
  6. Мачта, приподнимающая лопасти на определённую высоту над уровнем земли.

Мачты бывают разными: свободностоящие без растяжек, жёстко зафиксированные и поворотные на растяжках. Последние могут опускаться и подниматься для обслуживания, а также проведения ремонтно-восстановительных работ.

Под воздействием ветра лопасти, насаженные на генераторный вал, начинают вращаться, способствуя запуску ротора. В результате происходит преобразование кинетической энергии воздушных потоков в механическую, а потом и в электрическую энергию. Так выглядит сильно упрощённая схема работы ветряка

В действительности энергия от ветряной электростанции напрямую к потребителю не поступает. В системе обязательно должны быть подключены специальные приборы для преобразования электротока.

В цепи после генератора размещается контроллер. Он конвертирует переменный ток в постоянный. В таком виде электричество аккумулируется и сохраняется в батареях, а потом от них через инвертор, который трансформирует постоянный ток в переменный, энергия подаётся в частную электросеть.

Такая схема даёт возможность сгладить нестабильность напряжения, а также накапливать энергию в периоды полного отсутствия потребления. А это, в свою очередь, позволяет задействовать ветряные генераторы меньшей мощности, чем суммарная мощность бытовых электроприборов.

В ходе конвертации электротока по схеме переменный-постоянный-переменный происходят определённые потери энергии, которые составляют примерно 20%

Вместе с автономной ветряной станцией можно устанавливать и солнечные модули, и топливные генераторы.

Если задействовано сразу несколько устройств для получения электричества, схему дополняют ещё одним элементом – автоматическим выключателем (ABP). Он необходим, чтобы при отключении одного источника альтернативной энергии запускался другой – резервный.

В составе современных ветряных станций используются различные конструкции роторов – вращающихся частей. Они имеют свои преимущества и недостатки, разную эффективность и функциональные возможности. В настоящее время существует много разработок автономных систем, способных взаимодействовать с ветрами разной скорости и силы.

Место установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора — достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы «любят» когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к

данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Примеры ветровых электростанций в России и за рубежом

Примерно 10 лет назад в России суммарная мощность ветровых электростанций составляла 16,5 мегаватта. Среди крупнейших подобных ВЭС в РФ можно назвать:

  • Зеленоградская (Калининградская обл.);
  • Анадырская (Чукотка);
  • Заполярная (Коми);
  • Тюпкильды (Башкирия);
  • В Мурманской области.

На просторах бывшего СССР можно выделить следующие крупные ветровые электростанции:

  • Кордайская ВЭС. Построена в Казахстане на Кордайском перевале. Проектная мощность 21 МВт;
  • Старый Самбор. Построена на Украине рядом с городом Старый Самбор на высоте 500-600 метров над уровнем моря.
  • Крупные плавающие ВЭС есть у берегов Италии (строительством занималась фирма H Technologies BV) и Норвегии (StatoilHydro);
  • Среди крупнейших шельфовых ВЭС можно выделить станцию Миддельгрюнден в Дании (мощность 40 МВт) и London Array в Великобритании (630 МВт);
  • Крупнейшей ветровой электростанцией среди наземных является Альта в США (штат Калифорния). Суммарная мощность составляет 1550 МВт.

Частные ветряные электростанции

По существенно заниженным данным статистики, не учитывающим отдельно стоящие удаленные здания и сооружения, около 30 % частных хозяйств в сельской местности, куда прокладка электрических сетей невозможна по экономическим причинам, не имеют электроснабжения. Не везде даже стоят генераторы на жидком топливе. И это в XXI веке!

Исследования показали, что ветроэнергетические станции различной мощности можно устанавливать во многих районах севера и Крайнего Севера, на Сахалине и Камчатке, в Нижнем Поволжье, Сибири, Карелии и на Северном Кавказе.

На выбор установки влияют потребности заказчика. Если нужно обеспечить работу сельхозтехники, с такой задачей справится маломощный ветрогенератор. Если же нужно электрифицировать целое здание, наладить уличное освещение, обеспечить отопление дома, нужно выполнять проект ветряной электростанции.

Кроме среднемесячной скорости ветра и его направления нужно рассчитать среднемесячное потребление и пиковую нагрузку электроэнергии. Такие расчеты при желании несложно выполнить самостоятельно.

Существует еще один показатель, который влияет на стоимость оборудования и монтажа ВЭУ. Это высота мачты. Чем сооружение выше, тем больше скорость ветра и тем дороже оно обходится. Оптимальной, по утверждению специалистов, является высота мачты на 10 большая, чем самое высокое дерево или здание в радиусе 100 м.

Минусы ветровых электростанций

Идеальных устройств не существует в принципе. Это касается и ветровых установок, обладающих специфическими недостатками:

Существенные инвестиционные вложения в ветряные электростанции на первоначальном этапе. Хотя они и снижаются, их нельзя полностью сбрасывать со счетов при планировании.
Непостоянство и непредсказуемость силы и направления ветровых потоков, вызывающих колебания в количестве выработанной энергии. Иногда ветер может отсутствовать в течение нескольких дней, и потребители полностью остаются без электричества.
Движущиеся элементы ветряных установок нередко убивают пролетающих рядом птиц и летучих мышей. Особую опасность они представляют в периоды массовых миграций. Таким образом, определенный вред экологии все-таки наносится, хотя он и не носит системного характера.
Работа ветрогенераторов сопровождается постоянными шумами низкой частоты и практически неслышным инфразвуков. Эти минусы ветряных электростанций, превращаясь в отрицательные факторы, негативно воздействуют на человека, вызывая усталость и дискомфорт. В некоторых случаях лопасти, вращаясь с высокой скоростью, могут привести к радиолокационным помехам, искажению телевизионных сигналов.
Затраты на размещение достаточно высокие из-за дорогой аренды земли

При использовании большого количества ветровых электростанций, этот фактор приобретает важное значение в расчетах себестоимости электроэнергии.

Газотурбинная электростанция (ГТЭС)

Геотермальные электростанции (ГТЭС)

Волновая электростанция (ВЭС)

Портативная солнечная электростанция

Приливные электростанции (ПЭС)

Ветрогенераторы и электростанции своими руками

Способы автономного получения электроэнергии и их последствия

Решить проблему отсутствия электричества можно разными способами. Распространены дизельные и бензиновые генераторы, иногда встречаются мини-ГЭС, позволяющие обеспечить энергией небольшой поселок. Все эти способы имеют определенный недостаток — они отрицательно влияют на окружающую природу. Выбросы от двигателей бензиновых или дизельных генераторов губительно воздействуют на атмосферу, содержат пары свинца и прочих вредных химических соединений.

Дамбы, образуемые для создания мини-ГЭС создают искусственные водоемы, нарушающие естественное равновесие природных процессов в регионе, изменяют гидродинамический режим грунтовых водоносных пластов, объемы питания рек, расположенных ниже по течению. Все эти воздействия запускают процессы, уничтожающие природные богатства страны. Самое опасное в них — незаметность и постепенность действия. Все происходит очень медленно, исподволь, пока в один день не оказывается, что произошли необратимые изменения, полностью меняющие состояние экологии в регионе.

Как работают ветряные электрогенераторы? Принцип работы

Все ветряные генераторы работают по одному принципу: преобразуют кинетическую энергию воздушного потока во вращательное движение турбины. А затем механическая энергия вращения превращается в электрическую: при движении магнитов ротора внутри статорной обмотки вырабатывается переменный электрический ток. Его характеристики — стандартное напряжение 220 вольт — обеспечивают устройства стабилизации, расположенные внутри турбины или на мачте. Излишки тока накапливаются в аккумуляторных батареях.

Количество генерируемых ветростанций киловатт определят ту нагрузку, на которую можно рассчитывать. В паспорте каждого электроприбора указана его активная мощность. Зная, какие приборы и устройства планируется подключить, можно подсчитать необходимую производительность домашней ветростанции. Полученную цифру стоит увеличить на 30% — не будем забывать о реактивной мощности устройств при включении в сеть, о том, что бывает штиль и порывистый ветер. Для электроснабжения фермы, придорожного кафе, кемпинга необходима станция, которая вырабатывает 2-10 кВт. Небольшая ветроустановка производительностью 1 кВт и более, покроет потребности в электроэнергии загородного дома и дачи. Если же нужно обеспечить электроэнергией насос или время от времени подзаряжать аккумулятор, следует остановиться на самых маленьких моделях мощностью 20-500 Вт.

Типы ветрогенераторов

По мощности и области применения ветрогенераторы бывают

  • промышленные (мощность от 500 КВт);
  • бытовые (мощность 0-10 КВт).

Устройства с мощностью от 10 до 500 КВт используются крайне редко.

По конструкции бытовые типы ветряков отличаются конструкцией ротора (турбины)

  1. С горизонтальной осью. Отличаются системой управления турбины (ротора), она может быть:

    • аэромеханической (на лопастях установлены специальный «закрилышки», которые меняю угол направления ветра: чем больше скорость ветра, тем больше угол атаки лопастей и наоборот). Меняя угол атаки, мы можем управлять турбиной как на малых, так и на больших скоростях для эффективной и правильной работы устройства.
  2. с азимутальным приводом (электроника фиксирует скорость и направление ветра, поворачивает или отворачивает турбину от ветра, если скорость ветра превышает номинальную).
  3. С вертикальной осью – это малоэффективные устройства, которые не рекомендовано использовать из-за ряда недостатков. Они отличаются типом турбин:

    • ротор Савониуса (Savonius).Их недостатком является коэффициент опережения. Если скорость ветра 10 м/с, то законцовка турбины будет вращаться со скоростью 100 м/с, соответственно, коэффициент опережения – 10. Фактически ветряк не может самостоятельно стартовать, его нужно раскручивать и только после этого он начинает работать. Если этого не делать, то он начет вырабатывать энергию только при скорости ветра 10 м/с и больше.
  4. ротор Дарье (Darrieus). Применяются разве что как анемоскопы, так как малоэффективные.

Сейчас широкое применение получили ветрогенераторы с горизонтальной осью вращения (крыльчатые), благодаря тому, что у них коэффициент использования энергии ветрового потока (КИЭВ) легко достигает 30% и больше, а у ветрогенераторов с вертикальной осью вращения КИЭВ составляет около 20%.

Система бытового энергоснабжения с использованием ветрогенератора похожа на систему с солнечными модулями, в одной системе могут использоваться как ветрогенераторы, так и солнечные модули.

От высоты мачты и диаметра ротора зависит количество выработанной энергии следующим образом: на каждые 10 метров подъёма ветряка добавляется 1 м/с скорости ветра. Чем выше мачта, тем больше вероятность того, что он будет работать максимально эффективно. И та же ситуация с ротором: чем больше диаметр, тем больше выработка энергии.

Значения силы ветрового потока для работы ветряка

  1. Скорость ветра для начала вращения лопастей, при котором мощности нет вообще – от 1,5 м/с.
  2. Минимальная скорость ветра при которой уже начинается генерация мощности – 3 м/с.
  3. Номинальная скорость ветра (для ветрогенераторов украинского производства) – 7-9 м/с.
  4. Максимальная скорость ветра, при которой ветрогенератор украинского производства сохраняет свою работоспособность– 52 м/с (200 км/час), что свидетельствует о высоком качестве сборки установки и прочности материалов изготовления.

Парусный ветрогенератор

Если лопасти традиционных ветряков изготавливают из твердых материалов, то в парусном они наоборот — из материалов мягких. Подходит любая плотная ткань, например, брезент. Часто в таких конструкциях используется нетканые слоистые материалы. Внешне парусный ветрогенератор похож на большую детскую вертушку.

По конструкции парусные ветряки разделяются на два типа.

  • Круговой с треугольными парусными лопастями
  • С парусным колесом, тоже круговым

Парусный ветрогенератор с треугольными лопастями

Треугольные парусные лопасти обычно делают равнобедренными, но во многих случаях их форма подбирается индивидуально — под ветровые нагрузки местности, где они установлены. Парусный ветряк начинает работать при скорости ветра в 5 м/сек. КПД у него выше, чем у большинства лопастных ветряков, но при этом он не лишен многих недостатков. Так при перемене ветра «парусник» останавливается и ему необходимо время чтобы раскрутиться в новом направление ветропотока.

Другой недостаток — недолговечность самих «парусов». Они часто рвутся, выходят из строя и требуют полной замены. Считается, что этих недостатков лишен круговой парусный генератор. Его КПД в два раза выше, чем у генератора с парусными лопастями. Внешне он похож на спутниковую тарелку и отличается от привычных генераторов тем, что не имеет никаких вращающихся лопастей, цилиндров или роторов. Этот генератор вибрирует под напором или порывами ветра, своими колебаниями передавая механическую энергию на генератор.

Как выбрать ветрогенератор

При выборе ориентируйтесь на необходимый вам показатель мощности устройства. Учтите, что заявленную производителем мощность агрегат будет выдавать только при определенной скорости ветра. Не ждите от ветряка чудес – если он рассчитан на 10 м/с, а в вашей местности не более 5 м/с, то нужная мощность достигнута не будет, как итог — пустая трата денег.

Обратите внимание и на емкость аккумуляторных батарей, от которых работает установка в безветренную погоду. Рано или поздно они разряжаются, поэтому желательно присутствие дополнительного источника электричества, например солнечной батареи

Как вариант, можно подсоединить устройство к сети, чтобы восполнять недостаток энергии в случае надобности.

Выбор типа ветрогенератора

Выбирать плоский ветрогенератор следует с учетом средней скорости ветра в вашем регионе:

  1. В областях, где среднегодовая скорость ветра составляет меньше 3 м/с, лучше вообще отказаться от ветрогенератора, и вот почему. Если вы хотите получить постоянный источник электроэнергии, то понадобится бустер (устройство, состоящее из выпрямителя и стабилизатора), мощный аккумулятор, инвертор. Весь этот комплект будет стоит минимум 20 тыс. долларов, а показатель долговременной мощности составит не более 4 кВт. Но если все же вы непременно хотите купить ветрогенератор, отдайте предпочтение парусному типу.
  2. При скоростях ветра от 3 до 5 м/с наилучшим выбором будет тихоходный ветряк с вертикальной осью или ВСУ с парусным ротором.
  3. Для ветреных регионов (более 5 м/с) выбор зависит от требуемого показателя мощности. Самодельные ветрогенераторы с вертикальной осью применяются для 0.5 – 1.5 кВТ, 1.5 – 5 кВт – промышленные парусные системы, более 5 кВт – покупные «парусники» или горизонтальные лопастные ВСУ.