Реверсивное подключение однофазного асинхронного двигателя своими руками

Схема реверса с описанием подключения

В схеме подключения реверсивного магнитного пускателя с тепловым реле Рис. В работе остаётся только рабочая обмотка.

Концы второй обмотки подключают к клеммам W2 и V2. Он необходим для электробезопасности и аварийного отключения электромотора.

Корпус реверсивного пускателя состоит из таких следующих частей: Контактор. Второй выключатель должен иметь три положения.

Все изменения сводятся к магнитному пускателю КМ2, нормально разомкнутому контакту кнопки SB2. Заменой двух фаз и занимается второй пускатель в схеме.

Сами магнитные пускатели должны быть с блоками-контактов. Все зависит от того, как первоначально подключить концы обмоток. Электрические транспортные средства построены на основе последовательного возбуждения обмоток. Все совершается благодаря размыканию первой фазы.

Чтобы получить схему реверса, нужно отсоединить конец пусковой обмотки от контакта и туда подключить другой конец той же обмотки. Происходит включение катушки 2 пускателя К1. Принципиальным различием трехфазной схемы от одинарной считается наличие дополнительной цепочки управления и несколько модифицированной энергосиловой части. В упрощенном варианте схемы подключения мотора В подают на рабочую обмотку, один конец пусковой обмотки на фазу или ноль сети без разницы.

Чтобы получить схему реверса, нужно отсоединить конец пусковой обмотки от контакта и туда подключить другой конец той же обмотки. Для этого необходима реверсивная схема подключения.

На противоположенные клеймы выключателя подключаем сетевой шнур. Чтобы свести риски к минимуму, потребуется пускатель. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.
схема подключения двигателя по реверсивной схеме

Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующий стандарт:

ГОСТ 23851-79 Двигатели газотурбинные авиационные. Термины и определения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», опубликованном по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Схемы подключения

 Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Схема подключения пускового конденсатора

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Соединения, центробежный выключатель на валу ротора

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Некоторые элементы

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

Варианты схемы подключения конденсаторов

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно

Схема регулятора

Схема очень простая и может быть легко собрана даже начинающими радиолюбителями. Из плюсов сборки этого устройства могу назвать его низкую себестоимость и возможность подогнать под нужные потребности. На рисунке приведена печатная плата регулятора:

Но область применения данного регулятора не ограничивается одними слайдерами, его легко можно применить в качестве регулятора оборотов, например бор машинки, самодельного дремеля, с питанием от 12 вольт, либо компьютерного кулера, например, размерами 80 х 80 или 120 х 120 мм. Также мною была разработана схема реверса двигателя, или говоря другими словами, быстрой смены вращения вала в другую сторону. Для этого использовал шестиконтактный тумблер на 2 положения. На следующем рисунке изображена схема его подключения:

Средние контакты тумблера, обозначенные (+) и (-) подключают к контактам на плате обозначенным М1.1 и М1.2, полярность не имеет значения. Всем известно, что компьютерные кулеры, при снижении напряжения питания и, соответственно, оборотов, издают в работе намного меньший шум. На следующем фото, транзистор КТ805АМ на радиаторе:

В схеме можно использовать почти любой транзистор средней и большой мощности n-p-n структуры. Диод также можно заменить на подходящие по току аналоги, например 1N4001, 1N4007 и другие. Выводы двигателя зашунтированы диодом в обратном включении, это было сделано для защиты транзистора в моменты включения — отключения схемы, так как двигатель у нас нагрузка индуктивная. Также, в схеме предусмотрена индикация включения слайдера на светодиоде, включенном последовательно с резистором.

При использовании двигателя большей мощности, чем изображен на фото, транзистор для улучшения охлаждения нужно прикрепить к радиатору. Фото получившейся платы приведено ниже:

Плата регулятора была изготовлена методом ЛУТ. Увидеть, что получилось в итоге, можно на видеоролике.

Схема подключения однофазного двигателя через конденсатор

Во втором случае, для моторов с рабочим конденсатором, дополнительная обмотка подключена через конденсатор постоянно.

По информации на бирке мотора можно определить какая система в нем использована. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок.

Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Расчёт емкости производится исходя из рабочего напряжения и тока, или паспортной мощности мотора. Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.

Из-за сложности формул расчёта принято выбирать емкости, исходя из приведённых выше пропорций. Расчет емкости конденсатора мотора Существует сложная формула, с помощью которой высчитывают необходимую точную емкость конденсатора. В этих двигателях, рабочая и пусковая — одинаковые обмотки по конструкции трехфазных обмоток. После списания прибора в утиль в большинстве случаев электродвигатели сохраняют работоспособность и могут еще довольно долго послужить в виде самодельных электронасосов, точил, станков, вентиляторов и газонокосилок.

Статья по теме: Виды электромонтажных работ по смете

Заключение

В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Это схема обмотки звездой Красные стрелки — это распределение напряжения в обмотках мотора, говорит о том, что на одной обмотке распределяется напряжение единичной фазы в В, а двух других — линейного напряжения В.

После запуска двигателя, конденсаторы содержат определенное количество заряда, потому прикасаться к проводникам запрещается. В этой обмотке которая еще имеет название рабочей магнитный поток изменяется с такой частотой, с которой протекает по обмотке ток. Вычислить, какие провода к какой обмотке относятся, можно путем измерения сопротивления. Обмотка, у которой сопротивление меньше — есть рабочая. В статоре однофазного электродвигателя находится однофазная обмотка, что отличает его от трехфазного.

Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении. Такая схема исключает блок электроники, а следовательно — мотор сразу же с момента старта, будет работать на полную мощность — на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе; существуют электромоторы с двумя скоростями. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле в холодильниках.

Генератор может исполнять роль двигателя, а он в свою очередь — генератора. На корпусе однофазного асинхронного электродвигателя должна быть схема подключения, где указываются выводы основной и дополнительной обмотки, а также емкость конденсатора. В этом случае движок гудит, ротор остается на месте. Подключение однофазного электродвигателя

Основные неисправности

Искрение, возникающее между щетками и коллектором – самый главный вопрос, требующий внимания. Чтобы избежать неисправностей более серьезных, таких как их отслаивание и деформация или перегрев ламелей, сработавшуюся щетку необходимо заменить.

Помимо этого, возможно замыкание между обмотками якоря и статора, вызывающее сильное искрение на переходе коллектор-щетка или значительное падение магнитного поля.

Видео: Коллекторный электрический двигатель

Мы вновь возвращаемся в мир занимательного — как электротехника, так как считаю, что эти знания нам просто всем необходимы в нашей повседневной жизни.

Читать также: Почему паяльник не нагревается

Подписка на рассылку

Чтобы механизмы на производстве или в быту, будь-то дерево или металлообрабатывающие станки, консольный насос, конвейерная лента, кран-балка, заточной станок, электрическая газонокосилка, кормоизмельчитель или другое устройство работали без поломок, необходимо, в первую очередь, чтобы вал электродвигателя вращался в правильную сторону. Во избежание ошибок и не допуска вращения вала механизма в противоположную сторону согласно пункту 2.5.3 «Правил технической эксплуатации электроустановок потребителей» на корпусе самого механизма и приводном двигателе должны быть нанесены стрелки направления вращения электродвигателя.

Направление вращения вала электродвигателя


Определение направления вращения электродвигателя выполняется со стороны единственного конца вала. В том случае если двигатель имеет два конца вала, то вращение определяют со стороны вала, который имеет больший диаметр. Согласно ГОСТ 26772-85 правому направлению соответствует движение вала по часовой стрелке. У наиболее распространенных трехфазных двигателей с короткозамкнутым ротором вращение вала в правую сторону будет осуществляться, если последовательность фаз, по которым подается напряжение на концы обмоток статора, будет соответствовать алфавитной последовательности их маркировки – U1, V1, W1.

Правостороннее вращение

Для однофазных двигателей с короткозамкнутым ротором вращение вала по часовой стрелке будет выполняться при условии, когда фаза будет подаваться на конец рабочей обмотки.

Изменение направления вращения вала в трехфазных электродвигателях

Эксплуатация некоторых механизмов требует левостороннего вращения вала. Зная, как изменить направление вращения электродвигателя, это можно сделать без какой-либо доработки или переделки самого приводного двигателя. Для смены направления движения нужно:

  • обесточить электродвигатель;
  • снять крышку клеммной коробки;
  • переставить жилы силового кабеля в соответствие со схемой изображенной на рис. 3: жилу с изоляцией черного цвета (L3) переподключить на контакт V1 в клеммной коробке, а жилу коричневого цвета (L2) на контакт W1.


Левостороннее вращение

Если эксплуатация двигателя требует постоянного переключения двигателя с правостороннего вращения на левостороннее, его подключение осуществляют по специальной схеме,

Реверс однофазного электродвигателя

Запустить вращение однофазного асинхронного электродвигателя можно переподключив фазу на начало рабочей обмотки.


Зная, как поменять направление вращения электродвигателя, можно подключить однофазный электродвигатель с возможностью переключения правостороннего вращения на левостороннее с помощью трехконтактного переключателя.

Чтобы изменить направление вращения двигателя постоянного тока, нужно изменить направление вращающего момента М = смФ/я. Это можно сделать, изменив направление тока в обмотке якоря или направление магнитного потока в обмотке возбуждения. При одновременном изменении направления тока якоря и магнитного потока в обмотке возбуждения направление вращения не изменяется. Схемы соединений для изменения направления вращения представлены на рис. 6.1.

Подключение однофазного двигателя

Прежде чем приступить к подключению любого электродвигателя, необходимо быть полностью уверенным, что двигатель рабочий. Провести полную ревизию для проверки качества подшипников, отсутствия люфтов на посадочных местах ротора и в крышках двигателя. Провести проверку обмоток на замыкание между собой и на корпус.

Так-же при подключении необходимо соблюдать технику безопасности, быть предельно внимательным и работать без спешки.

Для подключения однофазного электродвигателя с пусковой обмоткой нам понадобится включатель с пусковым контактом – ПНВС. Число после букв означает силу тока на которую рассчитан данный выключатель.

Обратите внимание

В предыдущей статье я рассказал как определить тип двигателя, трёхфазный он или однофазный.

И если вы сомневаетесь в том, конденсаторный это двигатель или с пусковой обмоткой, то вам необходимо сначала подключить двигатель как с пусковой обмоткой и если он не запустится значит он конденсаторный.

Для того, чтобы узнать какая из двух обмоток является рабочей, необходимо измерить их сопротивление. Та катушка, которая будет иметь меньшее сопротивление является рабочей. Исключение составляет очень небольшой процент конденсаторных двигателей, у которых и рабочая обмотка и конденсаторная одинаковы и имеют одно сопротивление.

Пусковая обмотка подключается только для запуска двигателя и после того как двигатель набрал обороты – отключается. В работе остаётся только рабочая обмотка. Правильно намотанный двигатель, с проведённой ревизией без нагрузки на валу выходит на положенные обороты не больше чем за несколько секунд, но чаще – мгновенно. Поэтому при пробном пуске двигатель должен быть надёжно закреплён.

Один конец рабочей и пусковой соединяем вместе и подключаем к одной из крайних клейм кнопки. Это будет общий провод. Второй конец рабочей обмотки подключаем ко второй крайней клейме кнопки. А оставшийся провод пусковой катушки соединяем со средней клеймой кнопки.

При этом мы задействуем клеймы только с одной стороны кнопки. Три клеймы с другой стороны пока остаются свободными. К двум крайним из них подключаем сетевой шнур. А к центральной клейме подводим перемычку от той крайней клеймы, напротив которой подсоединён один рабочий провод.

Закрываем крышку кнопки, закрепляем двигатель, делаем пробное включение-выключение кнопки чтобы убедится в её работоспособности и знать что она находится в выключенном состоянии. Включаем вилку в розетку, нажимаем кнопку пуск и удерживаем до набора двигателем оборотов.

Важно

Но не более нескольких секунд. Затем кнопку отпускаем. Если двигатель гудит, но вращаться не начинает, значит двигатель конденсаторный и подключать его нужно по другой схеме.

Поэтому подойдёт любой подходящий по мощности пускатель, тумблер или выключатель который может смыкать и размыкать одновременно два контакта.

Соединяем один конец рабочей и один конец пусковой обмоток вместе и подводим к одной из клейм выключателя. Вторые концы обмоток подключаем к разным выводам конденсатора и при этом провод от рабочей катушки подводим ещё и к второй клейме выключателя. На противоположенные клеймы выключателя подключаем сетевой шнур.

 Переключаем тумблер в положение выключено, проверяем надёжность закрепления двигателя, включаем вилку в розетку и включаем тумблер. Двигатель без нагрузки на валу должен запуститься мгновенно.

Для того, чтобы однофазный двигатель вращался в другую сторону, необходимо поменять выводы одной из обмоток местами.

Если нам необходимо чтобы двигатель вращался и в одну и в другую стороны, то необходимо поставить тумблер реверса. Причём поставить его так, чтоб мы не могли переключить его во время работы двигателя. Это касается конденсаторного двигателя. Тумблер должен быть на 2 или 3 положения и иметь шесть выводов.

 В одном положении два средних вывода замыкаются с двумя крайними, а в другом с двумя другими крайними. Подключаем два провода одной из катушек двигателя к центральным клеймам переключателя, а крайнии клеймы соединяем по диагонали и отводим от них два провода которые подключаем туда, откуда отключили концы обмотки. Теперь при переключении тумблера двигатель будет запускаться в другую сторону.Схема реверса однофазного двигателя с пусковой обмоткой и кнопкой ПНВ.

О том как подобрать конденсатор к конденсаторному двигателю я расскажу в одной из следующих статей.

Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

Поэтому место расположения тумблера реверса на станке необходимо выбирать так, чтобы исключить случайное оперирование им во время работы. Устанавливайте его в углублениях конструкции.

Одна фаза вместо трех

На скорость вращения ротора это не повлияет, а вот мощность такой электрической машины упадет. В зависимости от нагрузки на валу, емкости конденсатора, схемы подключения, потери составляют 30–50 %.

Стоит сразу отметить, что аппараты не всех марок работают по однофазной схеме. Но все-таки большинство позволяет проводить с собой подобные манипуляции

Всегда стоит обращать внимание на прикрепленные таблички. Там есть все характеристики, глядя на которые можно увидеть, какая это модель и где она будет работать. Вторая (Б) показывает: электрическая машина рассчитана на 380 В, включение звездой

Теоретически, на меньшее напряжение переключиться возможно, но для этого нужно разбирать корпус, искать соединение обмоток и переключать их на треугольник. Можно, конечно, ничего не переключать просто поставив конденсатор. Однако потери мощности будут колоссальными

Вторая (Б) показывает: электрическая машина рассчитана на 380 В, включение звездой. Теоретически, на меньшее напряжение переключиться возможно, но для этого нужно разбирать корпус, искать соединение обмоток и переключать их на треугольник. Можно, конечно, ничего не переключать просто поставив конденсатор. Однако потери мощности будут колоссальными.

Если на табличке написано: Δ/Ỵ 127/220, то к сети 220 В такой аппарат можно включать только звездой, иначе он сгорит!

Основные способы реверсирования двигателя

Как мы уже писали ранее, существует несколько вариантов осуществления реверса. Выше мы как раз подробно описали самый распространенный – с помощью реверсивного пускателя. Давайте же опишем и другие немаловажные методики, применяемые электриками. Они имеют как общие, так и отличительные черты, благодаря чему они разные, хотя и выполняют одну и ту же задачу. 

Противовключение 

Данный способ используется при наличии стремительных изменений очередности переключения ключей транзистора. Когда чередование фаз на работающем моторе меняется, вращения поля соответственно, меняются. Из-за этого имеет место скольжение, генерируемое быстро возрастающим током частотного преобразователя. Показатель доходит до своего максимального значения, ограниченного внутренним уровнем частотника. Когда скольжение сильное – задание скорости уменьшается при помощи внутреннего регулятора ПЧ и малый тормозной момент. 

Когда же электродвигатель достигает нулевой скорости, тогда и происходит реверс, который полностью соответствует линиям разгона. Та энергия, которая не тратится на нагрузку и трение, поступает в ротор, где рассеивается. 

Изменение направления 

Здесь осуществляется изменение направленности вращений эл. поля при управлении периодом скорости замедления. Крутящий момент механизма, как известно, прямо противоположный моменту мотора и прерывает его по модулю. Если говорить простым языком, то естественное торможение происходит в несколько раз быстрее, чем указывает на то кривая замедления, установленная регулятором. Уровень скорости плавно снижается, в результате чего направленность оборотов меняется. 

В ситуациях, когда крутящий момент демонстрирует естественную остановку меньше уровня, определенного регулятором, мотор работает в режиме «рекуперативного» торможения, когда энергия следует обратно на преобразователь.  

Диодные мосты блокируют попадание энергии в сеть, а фильтровые конденсаторы заряжаются. Уровень напряжения постепенно растет, в результате чего запускается защитный прибор, который предотвращает выделение энергии.

Режим торможения 

Также, моторы с тремя фазами легко достигают реверса, если мотор длительное время работает на торможение. В большинстве ситуаций этот метод применяется на испытательных стендах. 

Режим торможения для реверса пример

Итак, при работе двигателя выделяется энергия, которая имеет высокие уровни, из-за чего резисторы просто не могут с справиться с ее рассеиванием. Чтобы предотвратить повышение температуры, существуют специальные системы, работающие на возврат энергии в сеть. Благодаря многоуровневому управлению четко и слаженно выполняются все функции, нацеленные на генерирование тока, максимально приближенного к частоте синуса.   

Применение реверсивного пускателя

Такой элемент управления электрической цепью, как реверсивный пускатель достаточно часто встречается в современном оборудовании, где предусмотрена функциональная возможность менять направление вращения ротора электромотора. Для промышленного применения выпускаются пускатели как для использования электрических двигателей с реверсом, так и для прямого их подключения. Все они используются для коммутации силовых агрегатов и подачи напряжения на электромотор. Только возможности реверсивного варианта дополнены функцией запуска мотора для работы в разных направлениях.

От обычных контакторов магнитный пускатель отличается тем, что обеспечивает защиту оборудования при режиме работы, предусматривающем частые запуски и остановки электроустановки. Такие устройства нередко включаются в схемы реверсивной работы электромотора при удаленном управлении системами вентиляции и кондиционирования, башенными кранами, насосными станциями, сверлильными и токарными станками, лифтами и многими другими промышленными и бытовыми механизмами.

В конструкцию типового магнитного пускателя входят следующие основные компоненты:

  • электромагнитный блок движущимся якорем и катушкой;
  • магнитный провод нормально разомкнутого типа;
  • силовые контакты, предназначенные для замыкания/размыкания фаз электромотора при его включении и выключении (в реверсивных моделях они обычно находятся со стороны якорной обмотки и в верхней части устройства);
  • коммутационные блоковые контакты для управляющей электроцепи;
  • возвратный механизм для перевода пускателя в исходное положение, оснащенный пружиной (якорь под действием пружины вытягивается из катушки и размыкает контакты).

Процесс подключения магнитного пускателя как прямого, так и реверсивного типа достаточно простой, поэтому с данной работой вполне справится человек, имеющий базовые познания в электротехнике. Особых специализированных навыков и глубоких познаний в радиоэлектронике здесь не требуется. По сравнению с обычными пусковыми устройствами, пускатели с реверсом имеют дополнительную управляющую цепь, а также некоторые особенности подсоединения силовой части. Схема уже содержит встроенную защиту от токов короткого замыкания через нормально замкнутые контакты на каждом из пусковых блоков.

Включение реверсивного магнитного пускателя в работу можно разделить на несколько этапов:

  • после активации основного выключателя подается напряжения на два блока силовых контактов, обеспечивающих вращение электромотора вправо или влево;
  • при нажатии кнопки на первом пусковом блоке подается управляющий ток на одну катушку пускателя, в результате чего внутри нее замыкаются нормально разомкнутые контакты, а в другой катушке наоборот размыкаются нормально замкнутые контакты;
  • напряжение поступает на силовые контакты электромотора и ротор начинает вращаться;
  • при необходимости, изменение направления вращения вала электрического мотора осуществляется посредством второго пускового блока, меняющего положение фаз (переключение на него происходит после отключения обмотки двигателя и полной остановки вращательного движения ротора);
  • нажатие кнопки на втором пусковом блоке активирует вторую пусковую обмотку, меняющую порядок включения силовых контактов и вызывающую реверсивное движение вала электромотора до тех пор, пока контакты управления обмоткой не будут снова разомкнуты.

В представленной вашему вниманию схеме защитный автомат обозначается как SF1, стоповая кнопка – SB1, первая пусковая кнопка – SB2, вторая кнопка пуска – SB3, прямой и реверсивный пусковые блоки – КМ1 и КМ2 соответственно.

Однофазные и трехфазные д0вигатели асинхронного типа

Договорились – трехфазные коллекторные двигатели достать сложно, текущий раздел речь ведет касательно асинхронных машин. Разновидности перечислим:

  1. Трехфазные асинхронные двигатели снабжены числом выводов три-шесть рабочих обмоток за вычетом различных предохранителей, внутренних реле, разнообразных датчиков. Катушки статора внутри объединяются звездой, делая невозможным напрямую включение в однофазную сеть.
  2. Однофазные двигатели, снабженные пусковой обмоткой, помимо прочего снабжаются парой контактов, ведущих к концевому центробежному выключателю. Миниатюрное устройство обрывает цепь, когда вал раскручен. Пусковая обмотка катализирует начальный этап. Дальнейшим действием будет мешать, снижая КПД двигателя. Принято конструкцию называть бифилярной. Пусковая обмотка наматывается двойным проводом, снижая реактивное сопротивление. Помогает уменьшить емкость конденсатора – критично. Ярким примером однофазных двигателей асинхронного типа с пусковой обмоткой выступают компрессоры бытовых холодильников.
  3. Конденсаторная обмотка, отличаясь от пусковой, работает непрерывно. Двигатели найдем внутри напольных вентиляторов. Конденсатор дает сдвиг фаз 90 градусов, позволяя выбрать направление вращения, поддержать нужную форму электромагнитного поля внутри ротора. Типично на корпусе двигателя конденсатор крепится.

  4. Мелкие асинхронные двигатели, применяемые вытяжками, вентиляторами, способны запускаться без конденсатора вовсе. Начальное движение образуется махом лопастей, либо искривлением проводки (бороздок) ротора в нужном направлении.

Научимся, как отличить однофазные двигатели асинхронного типа от трехфазных. В последнем случае внутри всегда имеется три равноценных обмотки. Поэтому можно найти три пары контактов, которые при исследовании тестером дают одинаковое сопротивление. Например, 9 Ом. Если обмотки объединены звездой внутри, выводов с одинаковым сопротивлением будет три. Из них любая пара дает идентичные показания, отображаемые экраном мультиметра. Сопротивление каждый раз равно двум обмоткам.

Поскольку ток должен выходить, иногда трехфазный двигатель имеет вывод нейтрали. Центр звезды, с каждым из трех других проводов дает идентичное сопротивление, вдвое меньшее, нежели демонстрирует попарная прозвонка. Указанные выше симптомы говорят красноречиво: двигатель трёхфазный, теме сегодняшнего разговора чуждый.

Рассматриваемые рубрикой моторы обмоток содержат две. Одна пусковая, либо конденсаторная (вспомогательная). Выводов обычно три-четыре. Отсутствуй украшающий корпус конденсатор, можно попробовать рассуждать, озадачиваясь предназначением контактов следующим образом:

  1. Выводов четыре штуки – нужно измерить сопротивление. Обычно звонятся попарно. Сопротивление ниже – нашли основную обмотку, подключаемую к сети 230 вольт без конденсатора. Полярность не играет роли, направление вращения задается способом включения вспомогательной обмотки, коммутацией катушек. Проще говоря, осуществите подключение однофазного электродвигателя характерного типа с одной лишь основной обмоткой – в начальный период времени вал стоит стоймя. Куда раскрутишь, туда пойдет вращение. Остерегайтесь производить старт рукой – поломает.

  2. Видим три вывода. Внутри концы катушек соединены, образуя звезду. Подаётся нейтраль (схемный нуль). Касаемо двух других выводов, сопротивление попарное будет наибольшим (равняется обеим обмоткам, включенным последовательно). Самое маленькое значение, как прежде, будет рабочей обмотки, фазу пусковой проходит, минуя конденсатор. Обеспечит сдвиг в нужную сторону. Обычно такой двигатель вращается однонаправленно, нельзя физически изменить полярность включения емкости. Однако существуют сведения (проверим эпюры в другой раз): питая рабочую катушку напряжением через конденсатор, пусковую включив напрямую, выполним реверс. Возможность подключить электродвигатель 3-проводной, реализуя обратное вращение, литературой опускается.